Graphene oxide addresses increasing interests as a solid acid catalyst working in water for carbohydrate conversion. If there is a general agreement to correlate its unique catalytic performances to its ability to adsorb sugars, the origin of its acidity remains controversial. In this article, we study the acid strength of graphene oxide (GO) prepared by modified Hummers method and that of reduced GO by calorimetry of NH3 adsorption and by FTIR of pyridine adsorption. Very strong acid sites are detected on GO by calorimetry, while reduced graphene oxide (reGO) is not very acidic. The FTIR of pyridine adsorption shows the prevailing presence of Br∅nsted acid sites and a unique feature, the presence of pyridine coordinated by hydrogen bonds. This exceptionally strong Br∅nsted acidity is tentatively explained by the presence of graphene domains decorated by hydroxyl, carboxylic, or sulfonated groups within the GO sheet, resulting in a high mobility of the negative charges which makes the proton free and explains its strong acidity. Accordingly, only GO is active and selective for native cellulose hydrolysis, leading to 27% yield in glucose. Finally, we show that sugar alcohols cannot be formed directly from cellulose using GO combined with Pt/re-GO under hydrogen, explained by the reduction of oxygenated functions of GO. The instability of the functional groups of GO in a reducing atmosphere is the weak point of this peculiar solid acid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.