This paper describes nonlinear dynamics model of x-configuration quadrotor using Newton-Euler modelling technique. To stabilize quadrotor attitude (roll (ϕ), pitch (θ), yaw (ψ)) during hovering, a PID controller is proposed. There is individual PID controller for each roll, pitch, yaw and z where 12 parameters consist of kp, ki, and kd are fine-tuned using particle swarm optimization algorithms. From the simulation, the sum absolute error fitness function give the best optimize result where quadrotor achieve zero steady state error for hovering with 18.9% overshoot, and 4.42s settling time. Accordingly, for attitude stabilization, roll angle, pitch angle, and yaw angle converge to the set point, zero approximately with settling time 2.76s, 0.1s and 3.2s respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.