Plants acquire essential elements from inherently heterogeneous soils, in which phosphate and iron availabilities vary. Consequently, plants have developed adaptive strategies to cope with low iron or phosphate levels, including alternation between root growth enhancement and attenuation. How this adaptive response is achieved remains unclear. Here, we found that low iron accelerates root growth in Arabidopsis thaliana by activating brassinosteroid signaling, whereas low-phosphate-induced high iron accumulation inhibits it. Altered hormone signaling intensity also modulated iron accumulation in the root elongation and differentiation zones, constituting a feedback response between brassinosteroid and iron. Surprisingly, the early effect of low iron levels on root growth depended on the brassinosteroid receptor but was apparently hormone ligand-independent. The brassinosteroid receptor inhibitor BKI1, the transcription factors BES1/BZR1, and the ferroxidase LPR1 operate at the base of this feedback loop. Hence, shared brassinosteroid and iron regulatory components link nutrient status to root morphology, thereby driving the adaptive response.
Plants feature remarkable developmental plasticity, enabling them to respond to and cope with environmental cues, such as limited availability of phosphate, an essential macronutrient for all organisms. Under this condition, Arabidopsis (Arabidopsis thaliana) roots undergo striking morphological changes, including exhaustion of the primary meristem, impaired unidirectional cell expansion, and elevated density of lateral roots, resulting in shallow root architecture. Here, we show that the activity of two homologous brassinosteroid (BR) transcriptional effectors, BRASSINAZOLE RESISTANT1 (BZR1) and BRASSINOSTEROID INSENSITIVE1-ETHYL METHANESULFONATE-SUPPRESSOR1 (BES1)/BZR2, blocks these responses, consequently maintaining normal root development under low phosphate conditions without impacting phosphate homeostasis. We show that phosphate deprivation shifts the intracellular localization of BES1/BZR2 to yield a lower nucleus-to-cytoplasm ratio, whereas replenishing the phosphate supply reverses this ratio within hours. Phosphate deprivation reduces the expression levels of BR biosynthesis genes and the accumulation of the bioactive BR 28-norcastasterone. In agreement, low and high BR levels sensitize and desensitize root response to this adverse condition, respectively. Hence, we propose that the environmentally controlled developmental switch from deep to shallow root architecture involves reductions in BZR1 and BES1/BZR2 levels in the nucleus, which likely play key roles in plant adaptation to phosphate-deficient environments.
Brassinosteroid activity controls plant growth and development, often in a seemingly opposing or complex manner. Differential impact of the hormone and its signalling components, acting both as promoters and inhibitors of organ growth, is exemplified by meristem differentiation and cell expansion in above- and below-ground organs. Complex brassinosteroid-based control of stomata count and lateral root development has also been demonstrated. Here, mechanisms underlying these phenotypic outputs are examined. Among these, studies uncovering core brassinosteroid signalling components, which integrate with distinct peptide, hormone, and environmental pathways, are reviewed. Finally, the differential spatiotemporal context of brassinosteroid activity within the organ, as an important determinant of controlled growth, is discussed.
Abscission is a process that involves shedding of plant organs from the main plant body. In this study it is shown that the process of petal separation in the fragrant rose, Rosa bourboniana, is accompanied by the expression of two xyloglucan endotransglucosylase/hydrolase genes, RbXTH1 and RbXTH2. The sequences of the two genes show 52% amino acid identity but are conserved at the catalytic site. The genes are up-regulated soon after the initiation of the abscission process and their transcription is associated with the progression of abscission, being faster in ethylene-treated flowers but slower during field abscission. Transcription is ethylene responsive, with the ethylene response being tissue-specific for RbXTH1 but largely tissue-independent for RbXTH2. Expression is correlated with an increase in xyloglucan endotransglucosylase (XET) action in petal abscission zones of both ethylene-treated and field abscising flowers. Proximal promoters of both the genes drive β-glucuronidase expression in an ethylene-responsive and abscission-related manner in agrobacteria-infiltrated rose petals, indicating that cis-elements governing ethylene-responsive and abscission-related expression probably lie within the first 700 nucleotides upstream of the translational initiation codon. The results show that cell wall remodelling of the xyloglucan moieties through the XET action of XTHs may be important for cell separation during abscission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.