A novel lab-on-paper device combining electrochemical and colorimetric detection for the rapid screening of Au(III) in the presence of a common interference, Fe(III), in industrial waste solutions is presented here. With dilute aqua regia (0.1 M HCl + 0.05 M HNO(3)) as the supporting electrolyte, square wave voltammetry on paper provided a well-defined reduction peak for Au(III) at approximately 287 +/- 12 mV vs Ag/AgCl. Under the optimized working conditions, the calibration curve showed good linearity in the concentration range of 1-200 ppm of Au(III) with a correlation coefficient of 0.997. The limit of detection (LOD) of the proposed method is 1 ppm. Interferences from various cations were also studied. Fe(III) is the only metal that affects the electrochemical determination of Au(III) when present above a 2.5-fold excess concentration of that of the Au(III). To overcome this limitation, a colorimetric method was used to simultaneously detect Fe(III) as a screening tool. The procedure was then successfully applied to determine Au(III) in gold-refining waste solutions. The results are in agreement with those obtained from inductively coupled plasma-atomic emission spectrometry (ICP-AES).
To the best of our knowledge, this is the first report on paper-based devices for automating the sequential multistep procedures of a sandwich-type enzyme-linked immunosorbent assay (ELISA) that require only a single-step application of the sample solution. The device was based on a piece of nitrocellulose (NC) membrane with specially designed channels, where all the reagents are applied at different locations in order to control the fluid travel to the detection region. The inkjet printing method, a simple and low-cost process, was used to create the flow channel and device barrier patterns. The fabricated barrier was found to be an efficient boundary for the liquid along the printed design in the NC membrane, enabling direct control of the reagent flow time. ELISA results were obtained with a single-step sample application. The developed devices (so-called automated paper-based devices) provided a simple procedure for the sandwich ELISA, while reducing assay time and reagent consumption. Colorimetric results were measured using digital camera imaging with software processing. The capability of the method developed herein was successfully used to determine the levels of human chorionic gonadotropin (hCG) by ELISA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.