The development of simple fluorescent and colorimetric assays that enable point-of-care DNA and RNA detection has been a topic of significant research because of the utility of such assays in resource limited settings. The most common motifs utilize hybridization to a complementary detection strand coupled with a sensitive reporter molecule. Here, a paper-based colorimetric assay for DNA detection based on pyrrolidinyl peptide nucleic acid (acpcPNA)-induced nanoparticle aggregation is reported as an alternative to traditional colorimetric approaches. PNA probes are an attractive alternative to DNA and RNA probes because they are chemically and biologically stable, easily synthesized, and hybridize efficiently with the complementary DNA strands. The acpcPNA probe contains a single positive charge from the lysine at C-terminus and causes aggregation of citrate anion-stabilized silver nanoparticles (AgNPs) in the absence of complementary DNA. In the presence of target DNA, formation of the anionic DNA-acpcPNA duplex results in dispersion of the AgNPs as a result of electrostatic repulsion, giving rise to a detectable color change. Factors affecting the sensitivity and selectivity of this assay were investigated, including ionic strength, AgNP concentration, PNA concentration, and DNA strand mismatches. The method was used for screening of synthetic Middle East respiratory syndrome coronavirus (MERS-CoV), Mycobacterium tuberculosis (MTB), and human papillomavirus (HPV) DNA based on a colorimetric paper-based analytical device developed using the aforementioned principle. The oligonucleotide targets were detected by measuring the color change of AgNPs, giving detection limits of 1.53 (MERS-CoV), 1.27 (MTB), and 1.03 nM (HPV). The acpcPNA probe exhibited high selectivity for the complementary oligonucleotides over single-base-mismatch, two-base-mismatch, and noncomplementary DNA targets. The proposed paper-based colorimetric DNA sensor has potential to be an alternative approach for simple, rapid, sensitive, and selective DNA detection.
A novel lab-on-paper device combining electrochemical and colorimetric detection for the rapid screening of Au(III) in the presence of a common interference, Fe(III), in industrial waste solutions is presented here. With dilute aqua regia (0.1 M HCl + 0.05 M HNO(3)) as the supporting electrolyte, square wave voltammetry on paper provided a well-defined reduction peak for Au(III) at approximately 287 +/- 12 mV vs Ag/AgCl. Under the optimized working conditions, the calibration curve showed good linearity in the concentration range of 1-200 ppm of Au(III) with a correlation coefficient of 0.997. The limit of detection (LOD) of the proposed method is 1 ppm. Interferences from various cations were also studied. Fe(III) is the only metal that affects the electrochemical determination of Au(III) when present above a 2.5-fold excess concentration of that of the Au(III). To overcome this limitation, a colorimetric method was used to simultaneously detect Fe(III) as a screening tool. The procedure was then successfully applied to determine Au(III) in gold-refining waste solutions. The results are in agreement with those obtained from inductively coupled plasma-atomic emission spectrometry (ICP-AES).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.