Actinin-1 mutations cause dominantly inherited congenital macrothrombocytopenia (CMTP), with mutations in the actin-binding domain increasing actinin's affinity for F-actin. In this study, we examined nine CMTP-causing mutations in the calmodulin-like and rod domains of actinin-1. These mutations increase, to varying degrees, actinin's ability to bundle actin filaments in vitro. Mutations within the calmodulin-like domain decrease its thermal stability slightly but do not dramatically affect calcium binding, with mutant proteins retaining calcium-dependent regulation of filament bundling in vitro. The G764S and E769K mutations increase cytoskeletal association of actinin in cells, and all mutant proteins colocalize with F-actin in cultured HeLa cells. Thus, CMTP-causing actinin-1 mutations outside the actin-binding domain also increase actin association, suggesting a common molecular mechanism underlying actinin-1 related CMTP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.