The marine environment is an untapped source of bioactive compounds. Specifically, marine macroalgae (seaweeds) are rich in polysaccharides that could potentially be exploited as prebiotic functional ingredients for both human and animal health applications. Prebiotics are non-digestible, selectively fermented compounds that stimulate the growth and/or activity of beneficial gut microbiota which, in turn, confer health benefits on the host. This review will introduce the concept and potential applications of prebiotics, followed by an outline of the chemistry of seaweed polysaccharides. Their potential for use as prebiotics for both humans and animals will be highlighted by reviewing data from both in vitro and in vivo studies conducted to date.
The efficiency of carotenoid micellarisation from plant foods can be used as an effective tool for the initial screening of carotenoid bioavailability. Therefore, the objectives of the present study were to assess the effects of cooking on the micellarisation of beta-carotene, lycopene, beta-cryptoxanthin and lutein from courgette (zucchini), red pepper and tomato; and, to a minor extent, investigate uptake of lutein by Caco-2 cells from micellar fractions obtained from raw and cooked courgettes. Both raw and cooked vegetables were subjected to an in vitro digestion procedure. beta-Carotene levels were significantly decreased in the digesta from each vegetable after boiling, grilling, microwave-cooking, or steaming, however all of the cooking methods enhanced beta-carotene transfer to micelles. Carotenoid micellarisation ranged from 1.7% to 100% depending on the food, carotenoid, and the cooking method tested. Grilling and microwave-cooking were generally the most detrimental on the transfer of xanthophyll carotenoids, namely beta-cryptoxanthin, to the micelles. Caco-2 cells absorbed greater amounts of lutein from the micelles of microwave-cooked courgettes than those that were raw, boiled, grilled, or steamed. Depending on the cooking methods used, carotenoid retention as well as micellarisation varied for each carotenoid among the different vegetables and different carotenoids present in each particular food.
Bacteriophages (phages) have traditionally been considered troublesome in food fermentations, as they are an important cause of starter-culture failure and trigger significant financial losses. In addition, from an evolutionary perspective, phages have contributed to the pathogenicity of many bacteria through transduction of virulence genes. In contrast, phages have played an important positive role in molecular biology. Moreover, these agents are increasingly being recognized as a potential solution to the detection and biocontrol of various undesirable bacteria, which cause either spoilage of food materials, decreased microbiological safety of foods, or infectious diseases in food animals and crops. The documented successful applications of phages and various phage-derived molecules are discussed in this review, as are many promising new uses that are currently under development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.