The present investigation dealswith the development and evaluation of floating tablets of nizatidine to prolong the gastric residence time, increase local delivery of drug to the H2-receptor of the parietal cell wall to reduce stomach acid secretion. The drug-excipient compatibility studies were conducted by using FTIR, DSC and visual observations. Citric acid inclusion in formulations resulted in incompatibility and the composition was modified to eliminate the problem of incompatibility. Floating matrix tablets of nizatidine were developed by direct compression method using hydroxypropyl methylcellulose (HPMC K4M) and polyox WSR 1105 alone as release retardants and sodium bicarbonate as a gas-generating agent. Alleleven formulations exhibited satisfactory physicochemical characteristics andin vitro buoyancy. Formulations F6 and F10 exhibited controlled and prolonged drug release for 10 h with zero order release. Formulation (F10) was selected as optimized formulation based on physicochemical properties and in vitro drug release and was used inradiographic studies by incorporating BaSO4. The radiographic studies were conducted in comparison with plain controlled release tablets. These studies revealed that gastric retention time of floating and plain controlled release tablets in fasting state were 2 ± 0.86 h and ≤ 0.5 h respectively in human volunteers. Gastric retention time of floating and plain controlled release tablets in fed state were 5.33 ± 0.57 h and 1.66 ± 0.28 h respectively in human volunteers. In conclusion, optimal floating matrix tablet for nizatidine with desired in vitro buoyancy, in vivo gastric retention time and prolonged release could be prepare
In this study, an accurate, simple, economical and precise Reversed-Phase High Pressure Liquid Chromatography (RP-HPLC) method was developed for the simultaneous estimation of Ozenoxacin and Benzoic Acid in a pharmaceutical cream formulation, according to the International Conference on Harmonisation (ICH) guidelines. Chromatographic separation was achieved by gradient elution, on RP-HPLC Instrument, equipped with column C8 (150 mm × 4.6 mm, 5 μm particle size) using Ultra Violet (UV) detector at 235 nm wavelength, by using Mobile Phase A: triethylamine, trifloroacetic acid and water (1:1:1000) and Mobile Phase B: methanol and Diluent: water, acetonitrile and triethylamine (500:500:1), at flow rate 0.8 mL min−1; injection volume of 20 μL; column oven temperature 45 °C and sample temperature: 25 °C; Run time: 15 min. All the validation parameters were within the acceptance criteria, as per ICH requirements, for Ozenoxacin and Benzoic acid. Consequently, this method has found to be validated, simple, rapid and successfully applicable, to the simultaneous estimation of Ozenoxacin and Benzoic acid by RP-HPLC, for routine analytical testing in quality control, with a run time of 15 min and for future research studies. Forced degradation of Ozenoxacin cream 1% w/w formulation was performed and found that validated method has stability indicating potential that needs to be further studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.