By introducing rapid reproduction, algorithms, and complex formal configurations, the digital era of architecture began a revolution. Architects incorporated the computational capacity of the computer into the design process both as a tool and as a critical component of the theories and practice of architecture as a whole. As we move into what has been coined "the second digital turn," a period in which digital integration is considered ubiquitous, how can we consider, prepare, and propel towards the next technological innovation to significantly inform design thinking, representation, and manifestation? What tools are available to investigate this speculative design future and how can they be implemented?If the integration of technology in architecture is now a given, perhaps the next digital design era is not just digital but virtual. As new technologies emerge the potential for integrating the virtual design world with our physical senses affords novel possibilities for interactive design, simulation, analysis and construction. Hybrid reality technologies, including virtual reality (VR) and augmented reality (AR), embody the potential to supersede conventional representation methodologies such as drawing, rendering, physical modeling, and animation. As they become increasingly pervasive, they will transform how we communicate ideas and data as spatial concepts. Further, they will reform the construct of the built environment when applied to both materiality and fabrication. This paper will describe the incorporation of VR as a tool in various classroom and laboratory settings, recognize the educational outcomes of this incorporation, and identify the potential relationship of these technologies to future academic exploration and application to practice.
This article presents the ongoing development and testing of a "shared realities" computational workflow to support iterative user-centered design with an interactive system. The broader aim is to address the challenges associated with observing and recording user interactions within the context of use for improving the performance of an interactive system. A museum installation is used as an initial test bed to validate the following hypothesis: by integrating threedimensional depth sensing and virtual reality for interaction design and user behavior observations, the shared realities workflow provides an iterative feedback loop that allows for remote observations and recordings for faster and effective decision-making. The methods presented focus on the software development for gestural interaction and user point cloud observations, as well as the integration of virtual reality tools for iterative design of the interface and system performance assessment. Experimental testing demonstrates viability of the shared realities workflow for observing and recording user interaction behaviors and evaluating system performance. Contributions to computational design, technical challenges, and ethical considerations are discussed, as well as directions for future work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.