Vespa crabro Linnaeus is newly reported as an adventive species in British Columbia, Canada which is the first record of this invasive species in western North America. The specimen of V. crabro was identified using morphological diagnostic keys and by comparison to authoritatively identified specimens. DNA barcoding provided support that the British Columbia specimen is conspecific with sequenced specimens of V. crabro. It is not possible to be certain of the origin of the specimen, but the DNA barcode was identical to sequence from specimens of V. crabro from South Korea. DNA barcoding was also performed on morphologically identified specimens of Vespa simillima and Vespa soror collected previously in British Columbia and the sequences were closest to V. simillima and V. soror Genbank sequences, respectively. There is no evidence that any of these species have established populations in the province. We provide diagnostic morphological characters to distinguish Canadian Vespa species from each other including Vespa mandarinia which has recently established populations in British Columbia and Washington State, USA. The potential detrimental impacts of each species are discussed.
The Neotropical parasitoid wasp Dolichogenidea gelechiidivoris (Marsh, 1975) (Hymenoptera: Braconidae), one of the most important biocontrol agents of the South American tomato pinworm Tuta absoluta (Meyrick, 1917) (Lepidoptera: Gelechiidae), is reported for the first time from Africa, from tomato grown in open fields and greenhouses in several regions of Algeria. Color photos of specimens from Algeria, Spain and South America, as well as the holotype and one paratype are provided. Morphological and molecular details to better characterize and recognize the species are also provided. We speculate that D. gelechiidivoris arrived accidentally to Algeria from Spain, where it has recently been reported. The consequences for future biocontrol projects against T. absoluta in Africa are discussed.
Ecological speciation is often observed in phytophagous insects and their parasitoids due to divergent selection caused by host‐associated or temporal differences. Most previous studies have utilized limited genetic markers or distantly related species to look for reproductive barriers of speciation. In our study, we focus on closely related species of Lygus bugs and two sister species of Peristenus parasitoid wasps. Using mitochondrial DNA COI and genomewide SNPs generated using ddRADseq, we tested for potential effects of host‐associated differentiation (HAD) or temporal isolation in this system. While three species of Lygus are clearly delineated with both COI and SNPs, no evidence of HAD or temporal differentiation was detected. Two Peristenus sister species were supported by both sets of markers and separated temporally, with P. mellipes emerging early in June and attacking the first generation of Lygus, while P. howardi emerging later in August and attacking the second generation of their hosts. This is one of the few studies to examine closely related hosts and parasitoids to examine drivers of diversification. Given the results of this study, the Lygus‐Peristenus system demonstrates temporal isolation as a potential barrier to reproductive isolation for parasitoids, which could indicate higher parasitoid diversity in regions of multivoltine hosts. This study also demonstrates that incorporating systematics improves studies of parasitoid speciation, particularly by obtaining accurate host records through rearing, carefully delimiting cryptic species and examining population‐level differences with genomic‐scale data among closely related taxa.
Vanhorniaeucnemidarum Crawford is the only species of Vanhorniidae that occurs in North America. This species is rarely collected and thus the distribution is not well documented. Intending to uncover a more accurate range of this species, we assembled collection records from museums, personal collections and citizen science projects. Many of these records were non-digitised and had to be personally requested.
Here we expand the known distribution of V.eucnemidarum to include nine new provinces and states: Manitoba, Connecticut, Oregon, Mississippi, Missouri, New Hampshire, New Jersey, Texas and Wisconsin. Although Quebec has been listed as a previous locality, the recorded province was mislabelled, so Quebec is now also officially a provincial record.
The new species and the first halictid bees documented from Saint Lucia Habralictus reinae, Lasioglossum (Dialictus) luciae, and L. (Habralictellus) delphiae are described. A fourth species, L. (D.) dominicense, is tentatively recorded from the island. The species are illustrated and compared to similar ones from the Lesser Antilles. Lasioglossum and Habralictus from neighbouring Saint Vincent and the Grenadines are reviewed and a key to Lasioglossum provided, including the description of another new species, L. (Dialictus) gemmeum. Trigona nigrocyanea Ashmead and Dufourea subcyanea Ashmead are synonymised under Lasioglossum cyaneum (Ashmead). Notes on the obscure Lasioglossum (Dialictus) minutum (Fabricius) are provided. A new name, Lasioglossum (Homalictus) minuens, is provided for a secondary homonym Homalictus minutus Pauly. The potential for additional species richness in Saint Lucia and the Lesser Antilles is briefly discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.