Mosses have been used as biomonitors of atmospheric pollution for some years, but few studies have been carried out on the effect of NO x emissions from traffic on moss tissue N. Eight species of moss (102 samples) growing on walls or roofs next to roads exposed to different traffic densities were collected from urban and rural sites in the UK. The shoots were sampled for total N, their stable isotope "&N\"%N content (δ"&N) and heavy metal content (Pb, Zn). There was a lack of correlation between tissue total N and traffic exposure, but a very good correlation between traffic exposure and tissue δ"&N. Plants collected near motorways or busy urban roads had δ"&N values ranging between j6 and k1=, while in rural areas with hardly any traffic these ranged from k2 to k12=. In a separate survey of mosses, the average δ"&N of shoots from busy roadsides in London was j3.66=, whereas from samples collected from farm buildings near poultry or cattle pens it was k7.8=. This indicates that the two main atmospheric N sources, NO x and NH x , have different δ"&N signatures, the former tending to be positive and the latter negative. Tissue concentrations of both Pb and Zn show a strong positive correlation with traffic exposure, with Zn in particular being greater than Pb. The results are discussed with regard to the use of moss tissue Zn as a means for monitoring or mapping pollution from vehicles, and of δ"&N as an aid to distinguish between urban (NO x ) and rural (NH x ) forms of N pollution.
A combined morphological and molecular phylogenetic analysis was performed to evaluate the subfamily relationships of the parasitoid wasp family Ichneumonidae (Hymenoptera). Data were obtained by coding 135 morphological and 6 biological characters for 131 exemplar species of ichneumonids and 3 species of Braconidae (the latter as outgroups). The species of ichneumonids represent all of the 42 currently recognized subfamilies. In addition, molecular sequence data (cytochrome oxidase I “DNA barcoding” region, the D2 region of 28S rDNA and part of the F2 copy of elongation factor 1-alpha) were obtained from specimens of the same species that were coded for morphology (1309 base pairs total). The data were analyzed using parsimony and Bayesian analyses. The parsimony analysis using all data recovered previously recognized informal subfamily groupings (Pimpliformes, Ophioniformes, Ichneumoniformes), although the relationships of these three groups to each other differed from previous studies and some of the subfamily relationships within these groupings had not previously been suggested. Specifically, Ophioniformes was the sister group to (Ichneumoniformes + Pimplformes), and Labeninae was placed near Ichneumoniformes, not as sister group to all Ichneumonidae except Xoridinae. The parsimony analysis using only morphological characters was poorly resolved and did not recover any of the three informal subfamily groupings and very few of the relationships were similar to the total-evidence parsimony analysis. The molecular-only parsimony analysis and both Bayesian analyses (total-evidence and molecular-only) recovered Pimpliformes, a restricted Ichneumoniformes grouping and many of the subfamily groupings recovered in the total-evidence parsimony analysis. A comparison and discussion of the results obtained by each phylogenetic method and different data sets is provided. It is concluded that the molecular characters produced results that were relatively consistent with traditional, non-phylogenetic concepts of relationships between the ichneumonid subfamilies, whereas the morphological characters did not (at least not by themselves). The inclusion of both molecular and morphological characters using parsimony produced a topology that was the closest to the traditional subfamily relationships. The method of analysis did not greatly affect the overall topology for the molecular-only analyses, but there were differences between Bayesian and parsimony results for the total-evidence analyses (especially near the root of the tree). The Bayesian results did not seem to be altered very much by the inclusion of morphological characters, unlike in the parsimony analysis. In summary, the following groups were supported in multiple analyses regardless of the characters used or method of tree-building: Pimpliformes, higher Ophioniformes, higher Pimpliformes, (Claseinae + Pedunculinae), (Banchinae + Stilbopinae), Campopleginae, Cremastinae, Diplazontinae, Ichneumoninae (including Alomya), Labeninae, Ophioninae, Poemeniinae, Rhyssinae, and Tersilochinae sensu stricto. Conversely, Ctenopelmatinae and Tryphoninae were never recovered without inclusion of other taxa. Based on the hypothesis of relationships obtained by the total-evidence parsimony analysis, the following formal taxonomic changes are proposed: Alomyinae Förster (= Alomya Panzer and Megalomya Uchida) is once again synonymized with Ichneumoninae and is now considered a tribe (Alomyinirev. stat.); and Notostilbops Townes is transferred from Stilbopinae to Banchinae, tribe Atrophini.
In this paper, we analyse the prospects for using nitrogen-vacancy centre (NV) containing diamond as a laser gain material by measuring its key laser related parameters. Synthetic chemical vapour deposition grown diamond samples with an NV concentration of ~1 ppm have been selected because of their relatively high NV concentration and low background absorption in comparison to other samples available to us. For the samples measured, the luminescence lifetimes of the NV- and NV0 centres were measured to be 8±1 ns and 20±1 ns respectively. The respective peak stimulated emission cross-sections were (3.6±0.1)×10-17 cm2 and (1.7±0.1)×10-17 cm2. These measurements were combined with absorption measurements to calculate the gain spectra for NV- and NV0 for differing inversion levels. Such calculations indicate that gains approaching those required for laser operation may be possible with one of the samples tested and for the NV- centre
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.