Trimethyllysine (Kme3) reader proteins are targets for inhibition due to their role in mediating gene expression. Although all such reader proteins bind Kme3 in an aromatic cage, the driving force for binding may differ; some readers exhibit evidence for cation–π interactions whereas others do not. We report a general unnatural amino acid mutagenesis approach to quantify the contribution of individual tyrosines to cation binding using the HP1 chromodomain as a model system. We demonstrate that two tyrosines (Y24 and Y48) bind to a Kme3-histone tail peptide via cation–π interactions, but linear free energy trends suggest they do not contribute equally to binding. X-ray structures and computational analysis suggest that the distance and degree of contact between Tyr residues and Kme3 plays an important role in tuning cation–π-mediated Kme3 recognition. Although cation–π interactions have been studied in a number of proteins, this work is the first to utilize direct binding assays, X-ray crystallography, and modeling, to pinpoint factors that influence the magnitude of the individual cation–π interactions.
Fluorophenylalanines bearing 2–5 fluorine atoms at the phenyl ring have been genetically encoded by amber codon. Replacement of F59, a phenylalanine residue that is directly involved in interactions with trimethylated K9 of histone H3, in the Mpp8 chromodomain recombinantly with fluorophenylalanines significantly impairs the binding to a K9-trimethylated H3 peptide.
A range of substrate-derived chloromethane inhibitors have been synthesized which have one to four amino acid residues. These have been used to inhibit both subtilisin and chymotrypsin. Using 13C NMR, we have shown that all except one of these inhibitors forms a tetrahedral adduct with chymotrypsin, subtilisin, and trypsin. From the pH-dependent changes in the chemical shift of the hemiketal carbon of the tetrahedral adduct, we are able to determine the oxyanion pKa in the different inhibitor derivatives. Our results suggest that in both the subtilisin and chymotrypsin chloromethane derivatives the oxyanion pKa is largely determined by the type of amino acid residue occupying the S1, subsite while binding in the S2-S4 subsites only has minor effects on oxyanion pKa values. Using free energy relationships, we determine that the different R groups of the amino acid residues binding in the S1 subsite only have minor effects on the oxyanion pKa values. We propose that the lower polarity of the chymotrypsin active site relative to that of the subtilisin active site explains why the oxyanion pKa is higher and more sensitive to the type of chloromethane inhibitor used in the chymotrypsin derivatives than in the subtilisin derivatives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.