We have devised an approach for analyzing shotgun proteomics datasets based on the normalized spectral abundance factor that can be used for quantitative proteomics analysis. Three biological replicates of samples enriched for plasma membranes were isolated from S. cerevisiae grown in 14N-rich media and 15N-minimal media and analyzed via quantitative multidimensional protein identification technology. The natural log transformation of NSAF values from S. cerevisiae cells grown in 14N YPD media and 15N-minimal media had a normal distribution. The t-test analysis demonstrated 221 of 1316 proteins were significantly overexpressed in one or the other growth conditions with a p value <0.05. Notably, amino acid transporters were among the 14 membrane proteins that were significantly upregulated in cells grown in minimal media, and we functionally validated these increases in protein expression with radioisotope uptake assays for selected proteins.
SUMMARY
Messenger RNA processing is coupled to RNA Polymerase II (RNAPII) transcription through coordinated recruitment of accessory proteins to the Rpb1 C-terminal domain (CTD). Dynamic changes in CTD phosphorylation during transcription elongation are responsible for their recruitment, with serine 5 phosphorylation (S5-P) occurring towards the 5’ end of genes and serine 2 phosphorylation (S2-P) occurring towards the 3’ end. The proteins responsible for regulation of the transition state between S5-P and S2-P CTD remain elusive. We show that a conserved protein of unknown function, Rtr1, localizes within coding regions, with maximum levels of enrichment occurring between the peaks of S5-P and S2-P RNAPII. Upon deletion of Rtr1, the S5-P form of RNAPII accumulates in both whole cell extracts and throughout coding regions; additionally, RNAPII transcription is decreased and termination defects are observed. Functional characterization of Rtr1 reveals its role as a CTD phosphatase essential for the S5- to S2- P transition.
Background: Reversible phosphorylation of the RNA Polymerase II CTD coordinates co-transcriptional recruitment of factors. Results: Ssu72 is required for erasure of phospho-serine7, and it facilitates Fcp1-mediated phospho-serine2 removal. Conclusion: Removal of phospho-Ser7 mark plays a key role in the transcription cycle. Significance: Persistent negative charge at position 7 of the CTD renders cells non-viable, and Ssu72 plays a prominent role in removing phospho-Ser7.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.