We have devised an approach for analyzing shotgun proteomics datasets based on the normalized spectral abundance factor that can be used for quantitative proteomics analysis. Three biological replicates of samples enriched for plasma membranes were isolated from S. cerevisiae grown in 14N-rich media and 15N-minimal media and analyzed via quantitative multidimensional protein identification technology. The natural log transformation of NSAF values from S. cerevisiae cells grown in 14N YPD media and 15N-minimal media had a normal distribution. The t-test analysis demonstrated 221 of 1316 proteins were significantly overexpressed in one or the other growth conditions with a p value <0.05. Notably, amino acid transporters were among the 14 membrane proteins that were significantly upregulated in cells grown in minimal media, and we functionally validated these increases in protein expression with radioisotope uptake assays for selected proteins.
Characterization of the chloroplast proteome is needed to understand the essential contribution of the chloroplast to plant growth and development. Here we present a large scale analysis by nanoLC-Q-TOF and nanoLC-LTQ-Orbitrap mass spectrometry (MS) of ten independent chloroplast preparations from Arabidopsis thaliana which unambiguously identified 1325 proteins. Novel proteins include various kinases and putative nucleotide binding proteins. Based on repeated and independent MS based protein identifications requiring multiple matched peptide sequences, as well as literature, 916 nuclear-encoded proteins were assigned with high confidence to the plastid, of which 86% had a predicted chloroplast transit peptide (cTP). The protein abundance of soluble stromal proteins was calculated from normalized spectral counts from LTQ-Obitrap analysis and was found to cover four orders of magnitude. Comparison to gel-based quantification demonstrates that ‘spectral counting’ can provide large scale protein quantification for Arabidopsis. This quantitative information was used to determine possible biases for protein targeting prediction by TargetP and also to understand the significance of protein contaminants. The abundance data for 550 stromal proteins was used to understand abundance of metabolic pathways and chloroplast processes. We highlight the abundance of 48 stromal proteins involved in post-translational proteome homeostasis (including aminopeptidases, proteases, deformylases, chaperones, protein sorting components) and discuss the biological implications. N-terminal modifications were identified for a subset of nuclear- and chloroplast-encoded proteins and a novel N-terminal acetylation motif was discovered. Analysis of cTPs and their cleavage sites of Arabidopsis chloroplast proteins, as well as their predicted rice homologues, identified new species-dependent features, which will facilitate improved subcellular localization prediction. No evidence was found for suggested targeting via the secretory system. This study provides the most comprehensive chloroplast proteome analysis to date and an expanded Plant Proteome Database (PPDB) in which all MS data are projected on identified gene models.
In this study, S. cerevisiae crude membrane fractions were prepared using the acid-labile detergent RapiGest from cells grown under rich and minimal media conditions using 14N and 15N ammonium sulfate as the sole nitrogen source. Four independent MudPIT analyses of 1:1 mixtures of sample were prepared and analyzed via quantitative multidimensional protein identification technology on a two-dimensional ion trap mass spectrometer. Using the method described in this study, low-abundance integral membrane proteins with up to 14 transmembrane domains were identified and their protein expression determined when sufficient spectrum counting and ion chromatogram information was generated. We demonstrate that spectrum counting and mass spectrometry derived ion chromatograms strongly correlate for determining quantitative changes in protein expression. Spectrum counting proved more reproducible and has a wider dynamic range contributing to the deviation of the two quantitative approaches from a perfect positive correlation.
Plastoglobules (PGs) in chloroplasts are thylakoid-associated monolayer lipoprotein particles containing prenyl and neutral lipids and several dozen proteins mostly with unknown functions. An integrated view of the role of the PG is lacking. Here, we better define the PG proteome and provide a conceptual framework for further studies. The PG proteome from Arabidopsis (Arabidopsis thaliana) leaf chloroplasts was determined by mass spectrometry of isolated PGs and quantitative comparison with the proteomes of unfractionated leaves, thylakoids, and stroma. Scanning electron microscopy showed the purity and size distribution of the isolated PGs. Compared with previous PG proteome analyses, we excluded several proteins and identified six new PG proteins, including an M48 metallopeptidase and two Absence of bc1 complex (ABC1) atypical kinases, confirmed by immunoblotting. This refined PG proteome consisted of 30 proteins, including six ABC1 kinases and seven fibrillins together comprising more than 70% of the PG protein mass. Other fibrillins were located predominantly in the stroma or thylakoid and not in PGs; we discovered that this partitioning can be predicted by their isoelectric point and hydrophobicity. A genome-wide coexpression network for the PG genes was then constructed from mRNA expression data. This revealed a modular network with four distinct modules that each contained at least one ABC1K and/or fibrillin gene. Each module showed clear enrichment in specific functions, including chlorophyll degradation/senescence, isoprenoid biosynthesis, plastid proteolysis, and redox regulators and phosphoregulators of electron flow. We propose a new testable model for the PGs, in which sets of genes are associated with specific PG functions.
The Plant Proteomics Database (PPDB; http://ppdb.tc.cornell.edu), launched in 2004, provides an integrated resource for experimentally identified proteins in Arabidopsis and maize (Zea mays). Internal BLAST alignments link maize and Arabidopsis information. Experimental identification is based on in-house mass spectrometry (MS) of cell type-specific proteomes (maize), or specific subcellular proteomes (e.g. chloroplasts, thylakoids, nucleoids) and total leaf proteome samples (maize and Arabidopsis). So far more than 5000 accessions both in maize and Arabidopsis have been identified. In addition, more than 80 published Arabidopsis proteome datasets from subcellular compartments or organs are stored in PPDB and linked to each locus. Using MS-derived information and literature, more than 1500 Arabidopsis proteins have a manually assigned subcellular location, with a strong emphasis on plastid proteins. Additional new features of PPDB include searchable posttranslational modifications and searchable experimental proteotypic peptides and spectral count information for each identified accession based on in-house experiments. Various search methods are provided to extract more than 40 data types for each accession and to extract accessions for different functional categories or curated subcellular localizations. Protein report pages for each accession provide comprehensive overviews, including predicted protein properties, with hyperlinks to the most relevant databases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.