Clock skew variations adversely affect timing margins, limiting performance, reducing yield, and may also lead to functional faults. Non-tree clock distribution networks, such as meshes and crosslinks, are employed to reduce skew and also to mitigate skew variations. However, these networks incur an increase in dissipated power while consuming significant metal resources. Several methods have been proposed to trade off power and wires to reduce skew. In this paper, an efficient algorithm is presented to reduce skew variations rather than skew, and prioritize the algorithm for critical timing paths, since these paths are more sensitive to skew variations. The algorithm has been implemented for a standard 65 nm cell library using standard EDA tools, and has been tested on several benchmark circuits. As compared to other methods, experimental results show a 37% average reduction in metal consumption and 39% average reduction in power dissipation, while insignificantly increasing the maximum skew.
Multi-ported RAMs are essential for high-performance parallel computation systems. VLIW and vector processors, CGRAs, DSPs, CMPs and other processing systems often rely upon multi-ported memories for parallel access, hence higher performance. Although memories with a large number of read and write ports are important, their high implementation cost means they are used sparingly in designs. As a result, FPGA vendors only provide dual-ported block RAMs to handle the majority of usage patterns. In this paper, a novel and modular approach is proposed to construct multi-ported memories out of basic dual-ported RAM blocks. Like other multi-ported RAM designs, each write port uses a different RAM bank and each read port uses bank replication. The main contribution of this work is an optimization that merges the previous live-value-table (LVT) and XOR approaches into a common design that uses a generalized, simpler structure we call an invalidation-based live-value-table (I-LVT). Like a regular LVT, the I-LVT determines the correct bank to read from, but it differs in how updates to the table are made; the LVT approach requires multiple write ports, often leading to an areaintensive register-based implementation, while the XOR approach uses wider memories to accommodate the XOR-ed data and suffers from lower clock speeds. Two specific I-LVT implementations are proposed and evaluated, binary and one-hot coding. The I-LVT approach is especially suitable for larger multi-ported RAMs because the table is implemented only in SRAM cells. The I-LVT method gives higher performance while occupying less block RAMs than earlier approaches: for several configurations, the suggested method reduces the block RAM usage by over 44% and improves clock speed by over 76%. To assist others, we are releasing our fully parameterized Verilog implementation as an open source hardware library. The library has been extensively tested using ModelSim and Altera's Quartus tools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.