We prove that the solvability of the multiplication group Mult(L) of a connected simply connected topological loop L of dimension three forces that L is classically solvable. Moreover, L is congruence solvable if and only if either L has a non-discrete centre or L is an abelian extension of a normal subgroup ℝ by the 2-dimensional nonabelian Lie group or by an elementary filiform loop. We determine the structure of indecomposable solvable Lie groups which are multiplication groups of three-dimensional topological loops. We find that among the six-dimensional indecomposable solvable Lie groups having a four-dimensional nilradical there are two one-parameter families and a single Lie group which consist of the multiplication groups of the loops L. We prove that the corresponding loops are centrally nilpotent of class 2.
Using connected transversals we determine the six-dimensional indecomposable solvable Lie groups with five-dimensional nilradical and their subgroups which are the multiplication groups and the inner mapping groups of three-dimensional connected simply connected topological loops. Together with this result we obtain that every six-dimensional indecomposable solvable Lie group which is the multiplication group of a three-dimensional topological loop has one-dimensional centre and two-or three-dimensional commutator subgroup.
In this paper we deal with the class $$\mathcal {C}$$
C
of decomposable solvable Lie groups having dimension six. We determine those Lie groups in $$\mathcal {C}$$
C
and their subgroups which are the multiplication groups Mult(L) and the inner mapping groups Inn(L) for three-dimensional connected simply connected topological loops L. This result completes the classification of the at most 6-dimensional solvable multiplication Lie groups of the loops L. Moreover, we obtain that every at most 3-dimensional connected topological proper loop having a solvable Lie group of dimension at most six as its multiplication group is centrally nilpotent of class two.
Определены геодезические и плоские вполне геодезические подалгебры в нильпотентных метрических алгебрах высшей ступени размерности $5$. Установлено, что в неравномерных метрических алгебрах Ли с одномерным центром геодезические векторы и плоские вполне геодезические подалгебры не зависят от выбора скалярного произведения.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.