There are currently a number of imaging techniques available for evaluating the morphology of liposomes and other nanoparticles, with each having its own advantages and disadvantages that should be considered when interpreting data. Controlling and validating the morphology of nanoparticles is of key importance for the effective clinical translation of liposomal formulations. There are a number of physical characteristics of liposomes that determine their in vivo behavior, including size, surface characteristics, lamellarity, and homogeneity. Despite the great importance of the morphology of nanoparticles, it is generally not well-characterized and is difficult to control. Appropriate imaging techniques provide important details regarding the morphological characteristics of nanoparticles, and should be used in conjunction with other methods to assess physicochemical parameters. In this review, we will discuss the advantages and limitations of available imaging techniques used to evaluate liposomal formulations.
Nanomedicines are typically submicrometer-sized carrier materials (nanoparticles) encapsulating therapeutic and/or imaging compounds that are used for the prevention, diagnosis and treatment of diseases. They are increasingly being used to overcome biological barriers in the body to improve the way we deliver compounds to specific tissues and organs. Nanomedicine technology aims to improve the balance between the efficacy and the toxicity of therapeutic compounds. Nanoparticles, one of the key technologies of nanomedicine, can exhibit a combination of physical, chemical and biological characteristics that determine their in vivo behavior. A key component in the translational assessment of nanomedicines is determining the biodistribution of the nanoparticles following in vivo administration in animals and humans. There are a range of techniques available for evaluating nanoparticle biodistribution, including histology, electron microscopy, liquid scintillation counting (LSC), indirectly measuring drug concentrations, in vivo optical imaging, computed tomography (CT), magnetic resonance imaging (MRI), and nuclear medicine imaging. Each technique has its own advantages and limitations, as well as capabilities for assessing real-time, whole-organ and cellular accumulation. This review will address the principles and methodology of each technique and their advantages and limitations for evaluating in vivo biodistribution of nanoparticles.
Cannabis has been used to relieve the symptoms of disease for thousands of years. However, social and political biases have limited effective interrogation of the potential benefits of cannabis and polarised public opinion. Further, the medicinal and clinical utility of cannabis is limited by the psychotropic side effects of ∆9-tetrahydrocannabinol (∆9-THC). Evidence is emerging for the therapeutic benefits of cannabis in the treatment of neurological and neurodegenerative diseases, with potential efficacy as an analgesic and antiemetic for the management of cancer-related pain and treatment-related nausea and vomiting, respectively. An increasing number of preclinical studies have established that ∆9-THC can inhibit the growth and proliferation of cancerous cells through the modulation of cannabinoid receptors (CB1R and CB2R), but clinical confirmation remains lacking. In parallel, the anti-cancer properties of non-THC cannabinoids, such as cannabidiol (CBD), are linked to the modulation of non-CB1R/CB2R G-protein-coupled receptors, neurotransmitter receptors, and ligand-regulated transcription factors, which together modulate oncogenic signalling and redox homeostasis. Additional evidence has also demonstrated the anti-inflammatory properties of cannabinoids, and this may prove relevant in the context of peritumoural oedema and the tumour immune microenvironment. This review aims to document the emerging mechanisms of anti-cancer actions of non-THC cannabinoids.
Advanced glycation endproducts (AGEs) accumulate on protein deposits including the beta-amyloid plaques in Alzheimer's disease. AGEs interact with the "receptor for advanced glycation endproducts", and transmit their signals using intracellular reactive oxygen species as second messengers. Ultimately, AGEs induce the expression of a variety of pro-inflammatory markers including the tumor necrosis factor (TNF-alpha) and inducible nitric oxide (NO) synthase. Antioxidants that act intracellularly, including polyphenols, have been shown to scavenge these "signaling" reactive oxygen species, and thus perform in an anti-inflammatory capacity. This study tested the pure compounds apigenin and diosmetin as well as extracts from silymarin, uva ursi (bearberry) and green olive leaf for their ability to attenuate AGE-induced NO and TNF-alpha production. All five tested samples inhibited BSA-AGE-induced NO production in a dose-dependent manner. Apigenin and diosmetin were most potent, and exhibited EC(50) values approximately 10 microM. In contrast, TNF-alpha expression was only reduced by apigenin, diosmetin and silymarin; not by the bearberry and green olive leaf extracts. In addition, the silymarin and bearberry extracts caused significant cell death at concentrations >or=10 microg/mL and >or=50 microg/mL, respectively. In conclusion, we suggest that plant-derived polyphenols might offer therapeutic opportunities to delay the progression of AGE-mediated and receptor for advanced glycation endproducts-mediated neuro-inflammatory diseases including Alzheimer's disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.