An energy-like error functional is introduced in the context of the ill-posed problem of boundary data recovering, which is well known as a Cauchy problem. Links with existing methods for data completion are detailed. Here the problem is converted into an optimization problem; the computation of the gradients of the energy-like functional is given for both the continuous and the discrete problems. Numerical experiments highlight the efficiency of the proposed method as well as its robustness in the model context of Laplace's equation, but also for anisotropic conductivity problems.
The problem of determining a crack by overspecified boundary data is considered. When complete data are available on the external boundary, a reciprocity gap concept is introduced. This concept formalizes the comparison of the response of the safe body to the response of the cracked one of the same physical characteristics. If the crack is known (or assumed) to be planar, explicit inversion formulae are derived determining the host plane equation and the length of an emerging crack in two-dimensional (2D) situations. A reciprocity gap functional is designed and exploited to establish a complete identification result.Numerical trials of the identification methods proposed show very good accuracies and insignificant computational costs.
In this paper we are concerned with the planar crack identification problem defined by a unique complete elastostatic overdetermined boundary datum. Based on the reciprocity gap principle, we give a direct process for locating the host plane and we establish a new constuctive identifiability result for 3D planar cracks.
We consider the inverse problems of locating pointwise or small size conductivity defaults in a plane domain, from overdetermined boundary measurements of solutions to the Laplace equation. We express these issues in terms of best rational or meromorphic approximation problems on the boundary, with poles constrained to belong to the domain. This approach furnishes efficient and original resolution schemes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.