We consider the inverse problems of locating pointwise or small size conductivity defaults in a plane domain, from overdetermined boundary measurements of solutions to the Laplace equation. We express these issues in terms of best rational or meromorphic approximation problems on the boundary, with poles constrained to belong to the domain. This approach furnishes efficient and original resolution schemes.
International audienceWe use the linear sampling method (LSM) to identify a crack with impedance boundary conditions from far-field measurements at a fixed frequency. This article extends the work of Cakoni-Colton [F. Cakoni and D. Colton, The linear sampling method for cracks, Inverse Probl. 19 (2003), pp. 279-295] where LSM has been used to reconstruct a crack with impedance boundary conditions on one side of the crack and a Dirichlet boundary condition on the other one. In addition, we present two methods to also reconstruct the impedance parameters whence the geometry is known. The first one is based on the interpretation of the indicator function produced by the LSM, while the second one is a natural approach based on the integral representation of the far-field in terms of densities on the crack geometry. The performance of the different reconstruction methods is illustrated through numerical examples in a 2D setting of the scattering problem
We consider composite media made of homogeneous inclusions with C 1,α boundaries. Our goal is to compare the potential uε in a perfectly periodic composite with the potential u ε,d of a perturbed periodic medium, where the periodicity defects consist of misplaced inclusions. We give an asymptotic expansion of the difference u ε,d − uε away from the defects and show that, to first order, a misplaced inclusion manifests itself via a polarization tensor, which is characterized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.