The first-passage-time p.d.f. through a time-dependent boundary for one-dimensional diffusion processes is proved to satisfy a new Volterra integral equation of the second kind involving two arbitrary continuous functions. Use of this equation is made to prove that for the Wiener and the Ornstein–Uhlenbeck processes the singularity of the kernel can be removed by a suitable choice of these functions. A simple and efficient numerical procedure for the solution of the integral equation is provided and its convergence is briefly discussed. Use of this equation is finally made to obtain closed-form expressions for first-passage-time p.d.f.'s in the case of various time-dependent boundaries.
The first-passage-time p.d.f. through a time-dependent boundary for one-dimensional diffusion processes is proved to satisfy a new Volterra integral equation of the second kind involving two arbitrary continuous functions. Use of this equation is made to prove that for the Wiener and the Ornstein-Uhlenbeck processes the singularity of the kernel can be removed by a suitable choice of these functions. A simple and efficient numerical procedure for the solution of the integral equation is provided and its convergence is briefly discussed. Use of this equation is finally made to obtain closed-form expressions for first-passage-time p.d.f.'s in the case of various time-dependent boundaries
The asymptotic behaviour of the first-passage-time p.d.f. through a constant boundary for an Ornstein–Uhlenbeck process is investigated for large boundaries. It is shown that an exponential p.d.f. arises, whose mean is the average first-passage time from 0 to the boundary. The proof relies on a new recursive expression of the moments of the first-passage-time p.d.f. The excellent agreement of theoretical and computational results is pointed out. It is also remarked that in many cases the exponential behaviour actually occurs even for small values of time and boundary.
We consider a continuous-time Ehrenfest model defined over the integers from −N to N , and subject to catastrophes occurring at constant rate. The effect of each catastrophe instantaneously resets the process to state 0. We investigate both the transient and steady-state probabilities of the above model. Further, the first passage time through state 0 is discussed. We perform a jump-diffusion approximation of the above model, which leads to the Ornstein-Uhlenbeck process with catastrophes. The underlying jump-diffusion process is finally studied, with special attention to the symmetric case arising when the Ehrenfest model has equal upward and downward transition rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.