The first-passage-time p.d.f. through a time-dependent boundary for one-dimensional diffusion processes is proved to satisfy a new Volterra integral equation of the second kind involving two arbitrary continuous functions. Use of this equation is made to prove that for the Wiener and the Ornstein–Uhlenbeck processes the singularity of the kernel can be removed by a suitable choice of these functions. A simple and efficient numerical procedure for the solution of the integral equation is provided and its convergence is briefly discussed. Use of this equation is finally made to obtain closed-form expressions for first-passage-time p.d.f.'s in the case of various time-dependent boundaries.
The first-passage-time p.d.f. through a time-dependent boundary for one-dimensional diffusion processes is proved to satisfy a new Volterra integral equation of the second kind involving two arbitrary continuous functions. Use of this equation is made to prove that for the Wiener and the Ornstein-Uhlenbeck processes the singularity of the kernel can be removed by a suitable choice of these functions. A simple and efficient numerical procedure for the solution of the integral equation is provided and its convergence is briefly discussed. Use of this equation is finally made to obtain closed-form expressions for first-passage-time p.d.f.'s in the case of various time-dependent boundaries
The first-crossing-time problem through two time-dependent boundaries for one-dimensional diffusion processes is considered. The first-crossing p.d.f.'s from below and from above are proved to satisfy a new systems of Volterra integral equations of the second kind involving two arbitrary continuous functions. By a suitable choice of such funcitons a system of continuous-kernel integral equations is obtained and an efficient algorithm for its solution is provided. Conditions on the drift and infinitesimal variance of the diffusion process are given such that the system of integral equations reduces to a non-singular single one
Motivated by some as yet unsolved problems of biological interest, such as the description of firing probability densities for Leaky-and-Integrate neuronal models, we consider the first-passage-time problem for Gauss-diffusion processes along the line of Mehr and McFadden (1965). This is essentially based on a space-time transformation, originally due to Doob (1949), by which any Gauss-Markov process can expressed in terms of the standardWiener process. Starting with an analysis that pinpoints certain properties of mean and autocovariance of a Gauss-Markov process, we are lead to the formulation of some numerical and time-asymptotically analytical methods for evaluating first-passage-time probability density functions for Gauss-diffusion processes. Implementations for neuronal models under various parameters choices of biological significance confirms the expected excellent accuracy of our methods
The first-crossing-time problem through two time-dependent boundaries for one-dimensional diffusion processes is considered. The first-crossing p.d.f.'s from below and from above are proved to satisfy a new system of Volterra integral equations of the second kind involving two arbitrary continuous functions. By a suitable choice of such functions a system of continuous-kernel integral equations is obtained and an efficient algorithm for its solution is provided. Finally, conditions on the drift and infinitesimal variance of the diffusion process are given such that the system of integral equations reduces to a non-singular single integral equation for the first-crossing-time p.d.f.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.