Consensus Statements of the American College of Veterinary Internal Medicine (ACVIM) provide the veterinary community with up-to-date information on the pathophysiology, diagnosis, and treatment of clinically important animal diseases. The ACVIM Board of Regents oversees selection of relevant topics, identification of panel members with the expertise to draft the statements, and other aspects of assuring the integrity of the process. The statements are derived from evidence-based medicine whenever possible and the panel offers interpretive comments when such evidence is inadequate or contradictory. A draft is prepared by the panel, followed by solicitation of input by the ACVIM membership which may be incorporated into the statement. It is then submitted to the Journal of Veterinary Internal Medicine, where it is edited prior to publication. The authors are solely responsible for the content of the statements. Mycoplasma bovis is a pathogen causing respiratory disease, otitis media, arthritis, mastitis, and a variety of other diseases in cattle worldwide. It is increasingly recognized by the veterinary and livestock communities as having an important impact on the health, welfare, and productivity of dairy and beef cattle. M. bovis diseases can be difficult to diagnose and control because of inconsistent disease expression and response to treatments and vaccines, and large gaps in our understanding of the epidemiology and pathophysiology of these diseases. There are limited data on which to base evidence-based decisions for treatment and control, and the literature contains differing clinical biases and opinions. This document is intended for veterinarians dealing with cattle and is focused on the cattle production systems of North America. The goal of the consensus statement panel was to encourage an evidence-based approach to M. bovis problems. The scientific literature was critically reviewed, including peer-reviewed journal articles and reviews obtained by database searches using the terms ''Mycoplasma bovis'' or ''mycoplasma 1 cattle.'' Where other data were lacking, conference proceedings were reviewed as a source of expert opinion.
Mycoplasma bovis Infections in Cattle
Influenza D virus (IDV), a new member of the influenza virus family, was first reported in 2011 in swine in Oklahoma, USA, and then soon found in cattle across North America and Eurasia. Earlier studies suggested cattle serve as natural reservoir for IDV. The goal of this study is to perform a retrospective study looking at sera collected from Nebraska beef herds in 2003–2004 and 2014 for evidence of IDV antibodies. Results showed that all 40 randomly selected farms (2003–2004) we tested contained IDV seropositive adult animals and that approximately 98% of newborn calves (2014) had high levels of maternal antibodies against IDV. This study suggested that IDV exposures were present in Nebraska beef cattle since at least 2003.
Bovine respiratory disease (BRD) is a multifactorial disease complex and the leading infectious disease in post-weaned beef cattle. Clinical manifestations of BRD are recognized in beef calves within a high-risk setting, commonly associated with weaning, shipping, and novel feeding and housing environments. However, the understanding of complex host immune interactions and genomic mechanisms involved in BRD susceptibility remain elusive. Utilizing high-throughput RNA-sequencing, we contrasted the at-arrival blood transcriptomes of 6 beef cattle that ultimately developed BRD against 5 beef cattle that remained healthy within the same herd, differentiating BRD diagnosis from production metadata and treatment records. We identified 135 differentially expressed genes (DEGs) using the differential gene expression tools edgeR and DESeq2. Thirty-six of the DEGs shared between these two analysis platforms were prioritized for investigation of their relevance to infectious disease resistance using WebGestalt, STRING, and Reactome. Biological processes related to inflammatory response, immunological defense, lipoxin metabolism, and macrophage function were identified. Production of specialized pro-resolvin mediators (SPMs) and endogenous metabolism of angiotensinogen were increased in animals that resisted BRD. Protein-protein interaction modeling of gene products with significantly higher expression in cattle that naturally acquire BRD identified molecular processes involving microbial killing. Accordingly, identification of DEGs in whole blood at arrival revealed a clear distinction between calves that went on to develop BRD and those that resisted BRD. These results provide novel insight into host immune factors that are present at the time of arrival that confer protection from BRD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.