The Maillard reaction (MR), despite its impact on flavor, color, and texture of cereal products, must be controlled for possible deleterious effects on protein nutritional quality. The present study aims to simultaneously monitor three indicators of the MR reaction (acid-released lysine, furosine, and carboxymethyllysine (CML)) by GC/MS in model cookies and evaluate the effect of formulation and baking temperature. Whereas furosine followed a bell-shape kinetic, indicative of an intermediary compound, CML linearly accumulated, proving to be a good indicator of the advanced MR. Acid-released lysine continuously decreased during baking. A reference baking level was defined to compare differently processed cookies using fluorescence synchronous spectra, highly sensitive to the dough physicochemical properties. Furosine was maximal in glucose-containing cookies, but only accounted for 5-50% lysine blockage, depending on the sugar and baking temperature. High oven temperatures and the use of fructose as the sugar source were associated with lowest the lysine damage and CML formation.
Milk fortification and processing -Nutritional impactMilk is nowadays fortified with various nutrients (vitamins, minerals, essential fatty acids and fibres...) in order to better fulfil the nutritional needs of population subgroups (infants, children, pregnant women, elderly...). On the other hand, long-term storage of food is better adapted to our modern lifestyle, explaining the preponderance of UHT milk (heat-treated for 3-6 sec at 130-135°C) (> 80% sails) over pasteurized milk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.