Adrenaline is known to prolong the duration of local anesthesia but its effects on the pharmacokinetic processes of local anesthetic drugs are not fully understood. Our objective was to develop a compartmental model for quantification of adrenaline’s impact on the pharmacokinetics of perineurally-injected lidocaine in the dog. Dogs were subjected to paravertebral brachial plexus block using lidocaine alone or adrenalinated lidocaine. Data was collected through a prospective, randomised, blinded crossover protocol performed over three periods. Blood samples were collected during 180 minutes following block execution. Compartmental pharmacokinetic models were developed and their goodness-of-fit were compared. The lowering effects of adrenaline on the absorption of lidocaine were statistically determined with one-sided tests. A one-compartment disposition model with two successive zero-order absorption processes best fitted our experimental data. Adrenaline decreased the peak plasma lidocaine concentration by approximately 60% (P < 0.001), decreased this local anesthetic’s fast and slow zero-order absorption rates respectively by 50% and 90% (P = 0.046, and P < 0.001), which respective durations were prolonged by 90% and 1300% (P < 0.020 and P < 0.001). Lidocaine demonstrated a previously unreported atypical absorption profile following its paravertebral injection in dogs. Adrenaline decreased the absorption rate of lidocaine and prolonged the duration of its absorption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.