Graphene nanoribbons (GNRs) are excellent candidates for next-generation electronic materials. Unlike GNRs produced by "top-down" methods such as lithographical patterning of graphene and unzipping of carbon nanotubes that cannot reach structural perfection, the fabrication of structurally well-defined GNRs has been achieved by a "bottom-up" organic synthesis via solution-mediated or surface-assisted cyclodehydrogenation. Specifically, non-planar polyphenylene precursors were first "build up" from small molecules, and then "graphitized" and "planarized" to yield GNRs. However, fabrication of processable and longitudinally well-extended GNRs has remained a major challenge. Here we report a "bottom-up" solution synthesis of long (>200 nm), liquid-phase processable GNRs with well-defined structure and a large optical bandgap of 1.88 eV. Scanning probe microscopy demonstrates self-assembled monolayers of GNRs, and non-contact, time-resolved Terahertz conductivity measurements reveal excellent charge-carrier mobility within individual GNRs. Such structurally well-defined GNRs offer great opportunities for fundamental studies into graphene nanostructures, as well as development of GNR-based nanoelectronics.DOI: 10.1038/NCHEM.1819 http://www.nature.com/nchem/journal/v6/n2/abs/nchem.1819.html 2 Graphene nanoribbons (GNRs), defined as nanometre-wide strips of graphene, are attracting increasing attention as highly promising candidates for next generation semiconductor materials 1,2,3,4 . Quantum confinement effects impart GNRs with semiconducting properties, i.e. with a finite bandgap, which critically depends on the ribbon width and its edge structure 1,3 . Fabrication of GNRs has been primarily carried out by "top-down" approaches such as lithographical patterning of graphene 5,6 and unzipping of carbon nanotubes 7,8 , revealing their semiconducting nature and excellent transport properties 1 . However, these methods are generally limited by low yields and lack of structural precision, leading to GNRs with uncontrolled edge structures.In contrast, a "bottom-up" chemical synthetic approach based on solution-mediated 9,10,11,12,13 or surface-assisted 14 cyclodehydrogenation, namely "graphitization" and "planarization", of tailor-made three-dimensional polyphenylene precursors offers an appealing strategy for making structurally well-defined and homogeneous GNRs. The polyphenylene precursors are built up from small molecules, and thus their structures can be tailored within the capabilities of modern synthetic chemistry 15 . However, GNRs (>30 nm) produced by solution-mediated methods have been precluded from unambiguous structural characterization, i.e. microscopic visualization, due to their limited processability 9,12 . On the other hand, GNRs produced by the surface-assisted protocol have been characterized to be atomically precise using scanning tunnelling microscopy (STM) 14 . Nevertheless, this method can only provide a limited amount of GNR material, which is further bound to a metal surface, impeding wide...
We present two novel allyl-based terminating agents that can be used to end-functionalize living polymer chains obtained by ring-opening metathesis polymerization (ROMP) using Grubbs' third generation catalyst. Both terminating agents can be easily synthesized and yield ROMP polymers with stable, storable activated ester groups at the chain-end. These end-functionalized ROMP polymers are attractive building blocks for advanced polymeric materials, especially in the biomedical field. Dye-labeling and surface-coupling of antimicrobially active polymers using these end-groups were demonstrated.
The interfacial charge transfer characteristics of n-type GaN are investigated in pure phosphate buffered saline, as well as in solutions containing I − / I 3 − or hydroquinone/benzoquinone redox couples. Cyclic voltammetry and transient photoresponse measurements in the presence of above-bandgap illumination reveal that hole transfer to the solution is mediated by surface states in all cases. For measurements in pure PBS, a modification of the surface during cyclic potential sweeps is observed. In contrast, the presence of the redox species used in this work efficiently suppresses the oxygen evolution reaction and the associated surface modification. Furthermore, charge transfer to the redox couple is fully reversible using GaN as a dark cathode and photoanode, respectively. The presented study is of significant importance for applications of GaN in photocatalysis and biosensing, where the stability of (bio)functionalized surfaces is an essential requirement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.