Chloromethane (CHCl) is the most abundant halogenated trace gas in the atmosphere. It plays an important role in natural stratospheric ozone destruction. Current estimates of the global CHCl budget are approximate. The strength of the CHCl global sink by microbial degradation in soils and plants is under discussion. Some plants, particularly ferns, have been identified as substantial emitters of CHCl. Their ability to degrade CHCl remains uncertain. In this study, we investigated the potential of leaves from 3 abundant ferns (Osmunda regalis, Cyathea cooperi, Dryopteris filix-mas) to produce and degrade CHCl by measuring their production and consumption rates and their stable carbon and hydrogen isotope signatures. Investigated ferns are able to degrade CHCl at rates from 2.1 to 17 and 0.3 to 0.9μggday for C. cooperi and D. filix-mas respectively, depending on CHCl supplementation and temperature. The stable carbon isotope enrichment factor of remaining CHCl was -39±13‰, whereas negligible isotope fractionation was observed for hydrogen (-8±19‰). In contrast, O. regalis did not consume CHCl, but produced it at rates ranging from 0.6 to 128μggday, with stable isotope values of -97±8‰ for carbon and -202±10‰ for hydrogen, respectively. Even though the 3 ferns showed clearly different formation and consumption patterns, their leaf-associated bacterial diversity was not notably different. Moreover, we did not detect genes associated with the only known chloromethane utilization pathway "cmu" in the microbial phyllosphere of the investigated ferns. Our study suggests that still unknown CHCl biodegradation processes on plants play an important role in global cycling of atmospheric CHCl.
Key Points (shortened to less than 140 characters each, and changed as suggested by Reviewer #2): • In spring and summer 2020, stations in the northern extratropics report on average 7% (4 nmol/mol) less tropospheric ozone than normal. • Such low tropospheric ozone, over several months, and at so many sites, has not been observed in any previous year since at least 2000. • Most of the reduction in tropospheric ozone in 2020 is likely due to emissions reductions related to the COVID-19 pandemic.
Abstract. The Sentinel-5 Precursor (S5P) mission with the TROPOspheric Monitoring Instrument (TROPOMI) on board has been measuring solar radiation backscattered by the Earth's atmosphere and surface since its launch on 13 October 2017. In this paper, we present for the first time the S5P operational methane (CH4) and carbon monoxide (CO) products' validation results covering a period of about 3 years using global Total Carbon Column Observing Network (TCCON) and Infrared Working Group of the Network for the Detection of Atmospheric Composition Change (NDACC-IRWG) network data, accounting for a priori alignment and smoothing uncertainties in the validation, and testing the sensitivity of validation results towards the application of advanced co-location criteria. We found that the S5P standard and bias-corrected CH4 data over land surface for the recommended quality filtering fulfil the mission requirements. The systematic difference of the bias-corrected total column-averaged dry air mole fraction of methane (XCH4) data with respect to TCCON data is -0.26±0.56 % in comparison to -0.68±0.74 % for the standard XCH4 data, with a correlation of 0.6 for most stations. The bias shows a seasonal dependence. We found that the S5P CO data over all surfaces for the recommended quality filtering generally fulfil the missions requirements, with a few exceptions, which are mostly due to co-location mismatches and limited availability of data. The systematic difference between the S5P total column-averaged dry air mole fraction of carbon monoxide (XCO) and the TCCON data is on average 9.22±3.45 % (standard TCCON XCO) and 2.45±3.38 % (unscaled TCCON XCO). We found that the systematic difference between the S5P CO column and NDACC CO column (excluding two outlier stations) is on average 6.5±3.54 %. We found a correlation of above 0.9 for most TCCON and NDACC stations. The study shows the high quality of S5P CH4 and CO data by validating the products against reference global TCCON and NDACC stations covering a wide range of latitudinal bands, atmospheric conditions and surface conditions.
Abstract. The Sentinel-5 Precursor (S5P) mission with the TROPOspheric Monitoring Instrument (TROPOMI) onboard has been measuring solar radiation backscattered by the Earth's atmosphere and its surface since its launch on 13 October 2017. Methane (CH4) and carbon monoxide (CO) data with a spatial resolution (initially 7 x 7 km2, upgraded to 5.5 x 7 km2 on 6th of August 2019) have been retrieved from shortwave infrared (SWIR) and near-infrared (NIR) measurements since the end of November 2017 and made available to the experts for early validation and quality checks before the official product release. In this paper, we present for the first time the S5P CH4 and CO validation results (covering a period from November 2017 to September 2020) using global Total Carbon Column Observing Network (TCCON) and Infrared Working Group of the Network for the Detection of Atmospheric Composition Change (NDACC-IRWG) network data, accounting for a priori alignment and smoothing uncertainties in the validation, and testing the sensitivity of validation results towards the application of advanced co-location criteria.We found that the required bias (systematic error) of 1.5 % and random error of 1 % for the S5P standard and bias-corrected methane data are met for measurements over land surfaces with pixels having quality assurance (QA) value > 0.5. The systematic difference between the S5P standard XCH4 and TCCON data is on average −0.69 ± 0.73 %. The systematic difference changes to a value of −0.25 ± 0.57 % for the S5P bias-corrected XCH4 data. We found a correlation of above 0.6 for most stations, which is mostly dominated by the seasonal cycle. The contributions of smoothing uncertainty at the individual stations are estimated and found to be dependent on the location. The highest contribution of the smoothing uncertainty is observed for mid-latitude TCCON stations and high latitude stations for NDACC. A seasonal dependency of the relative bias is seen. We observe a high bias during the springtime measurements at high SZA and a decreasing bias with increasing SZA for the rest of the year.We found that the required bias (systematic error) of 15 % and random error of < 10 % for the S5P carbon monoxide data are met in general for measurements over all surfaces with pixels having quality assurance value of > 0.5. There are a few stations where this is not the case, mostly due to co-location mismatches and the limited availability of co-located data. We compared the S5P XCO data with respect to standard TCCON XCO and unscaled TCCON XCO (without application of the empirical scaling factor) data sets. The systematic difference between the S5P XCO and the TCCON data is on average 9.14 ± 3.33 % (standard TCCON XCO data) and 2.36 ± 3.22 % (unscaled TCCON XCO data). We found that the systematic difference between the S5P CO column and NDACC CO column data (excluding two stations that were obvious outliers) is on average 6.44 ± 3.79 %. We found a correlation of above 0.9 for most TCCON and NDACC stations indicating that the temporal variations in CO column captured by the ground-based instruments are reproduced very similarly by the S5P CO column. The contribution of smoothing uncertainty at the individual stations is estimated and found to be significant. They are found to be dependent on the location with large changes seen for stations located in the Southern Hemisphere as compared to the Northern Hemisphere and at highly polluted stations. A cone co-location criterion, which gives a better match between the ground-based instrument's line-of-sight and satellite pixels, seems to give better results for high latitude stations and stations located close to emission sources. The validation results for the clear-sky and cloud cases of S5P pixels are comparable to the validation results including all pixels with quality assurance value of > 0.5. We observe that the relative bias increases with increasing SZA. We estimated this increase is about 10 % over the complete range of measurement SZAs.The study shows the high quality of S5P CH4 and CO data by validating the products against reference global TCCON and NDACC stations covering a wide range of latitudinal bands, atmospheric conditions, and surface conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.