The Hedgehog (HH) pathway has been linked to the formation of basal cell carcinoma (BCC), medulloblastoma, and other cancers. The recently approved orally active drugs vismodegib (GDC‐0449) and sonidegib (LDE–225) were not only efficacious for the treatment of advanced or metastatic BCC by antagonizing the smoothened (SMO) receptor, but also produced important side effects, limiting their use for less invasive BCC. Herein, we compared a large series of SMO antagonists, including GDC‐0449 and LDE‐225, the clinically tested BMS‐833923, CUR‐61414, cyclopamine, IPI‐926 (saridegib), itraconazole, LEQ‐506, LY‐2940680 (taladegib), PF‐04449913 (glasdegib), and TAK‐441 as well as preclinical candidates (PF‐5274857, MRT‐83) in two SMO‐dependent cellular assays and for G‐protein activation. We report marked differences in inhibitor potencies between compounds as well as a notable disparity between the G‐protein assay and the cellular tests, suggesting that classification of drugs is assay dependent. Furthermore, we explored topical efficacies of SMO antagonists on depilated mice using Gli1 and Ptch1 mRNA quantification in skin as biomarkers of the HH signaling inhibition. This topical model rapidly discriminated drugs in terms of efficacies and potencies for inhibition of both biomarkers. SMO antagonists showed also a large variation in their blood and skin partition, suggesting that some drugs are more favorable for topical application. Overall, our data suggested that in vitro and in vivo efficacious drugs such as LEQ‐506 and TAK‐441 may be of interest for topical treatment of less invasive BCC with minimal side effects.
We report the discovery of a new family of α(2) adrenergic receptor antagonists derived from atipamezole. Affinities of the compounds at human α(2) and α(1b) receptors as well as their functional activities at hα(2A) receptors were determined in competition binding and G-protein activation assays, respectively. Central α(2) antagonist activities were confirmed in mice after oral administration. Further studies on a selected example: (+)-4-(1a,6-dihydro-1H-cyclopropa[a]inden-6a-yl)-1H-imidazole, (+)-1 (F 14805), were undertaken to probe the potential of the series. On the one hand, (+)-1 increased the release of noradrenaline in mouse frontal cortex following acute systemic administration, the magnitude of this effect being much larger than that obtained with reference agents. On the other, (+)-1 produced minimal cardiovascular effects in intact, anesthetized rat, a surprising outcome that might be explained by its differential action at peripheral and central α(2) receptors. A strategy for improving the therapeutic window of α(2) antagonists is put forward.
Objective
Deleterious effects of pollutants and ultraviolet radiation on the skin can be attenuated using formulations containing antioxidants. However, these have disadvantages, including chemical instability, photodegradation, poor bioavailability or biological activity. Here, two commercial formulations were evaluated: one optimized to stabilize and deliver ascorbic acid (AA) at 15% and the other containing a glucoside form of AA, namely ascorbic acid 2‐glucoside (AA2G), at 1.8% and at a physiological pH. We compared the skin delivery, antioxidative effects and chemical stability of AA2G with AA in their respective formulations.
Methods
Skin delivery was measured using fresh viable human skin explants, and oxidative stress was measured using a human reconstructed epidermal (RHE) model according to levels of malondialdehyde (MDA), superoxide dismutase (SOD) and catalase.
Results
Ascorbic acid 2‐glucoside was completely metabolized to AA by the skin before entering the receptor compartment. The skin contained parent and AA, indicating a reserve of AA2G was present for further metabolism. For AA2G and AA, maximum flux of AA‐equivalents was at 12 h, with continued absorption over 24 h. The absolute amount in µg was higher in the skin after application of AA than after application of AA2G. This may suggest a greater antioxidative effect; however, according to all three measurements of oxidative stress, the protective effect of AA and AA2G was similar. Unlike AA, AA2G was chemically stable under storage conditions.
Conclusion
A lower concentration of AA2G is as effective as the active metabolite, AA, in terms of antioxidant effects. AA2G was chemically stable and can be applied at a lower concentration than AA, thus avoiding the need for an acidic formulation with a pH below 3.5.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.