This study evaluates targeted liposomes loaded with the a-particle generator 225 Ac to selectively kill prostate-specific membrane antigen (PSMA)-expressing cells with the aim to assess their potential for targeted antivascular radiotherapy. Methods: In this study, PEGylated liposomes were loaded with 225 Ac and labeled with the mouse antihuman PSMA J591 antibody or with the A10 PSMA aptamer. The targeting selectivity, extent of internalization, and killing efficacy of liposomes were evaluated on monolayers of prostate cancer cells intrinsically expressing PSMA (human LNCaP and rat Mat-Lu cells) and on monolayers of HUVEC induced to express PSMA (induced HUVEC). Results: The loading efficiency of 225 Ac into preformed liposomes ranged from 58.0% 6 4.6% to 85.6% 6 11.7% of introduced radioactivity. The conjugation reactions resulted in approximately 17 6 2 J591 antibodies and 9 6 2 A10 aptamers per liposome. The average size of liposomes, 107 6 2 nm in diameter, was not affected by conjugation or loading. LNCaP cells exhibit 2:1:0.5 relative PSMA expression, compared with MatLu and induced HUVEC, respectively, based on flow cytometry detecting association of the J591 antibody. J591-labeled liposomes display higher levels of total specific binding to all cell lines than A10 aptamer-labeled liposomes. Specific cell association of targeted liposomes increases with incubation time. Cytotoxicity studies demonstrate that radiolabeled J591-labeled liposomes are most cytotoxic, with median lethal dose values, after 24 h of incubation, equal to 1.96 (5.3 · 10 25 ), 2.92 · 10 2 (7.9 · 10 23 ), and 2.33 · 10 1 Bq/mL (6.3 · 10 24 mCi/mL) for LNCaP, Mat-Lu, and induced HUVEC, respectively, which are comparable to the values for the radiolabeled J591 antibody. For A10 aptamer-labeled liposomes, the corresponding values are 3.70 · 10 1 (1.0 · 10 23 ), 1.85 · 10 3 (5.0 · 10 22 ), and 4.07 · 10 3 Bq/mL (1.1 · 10 21 mCi/mL), respectively. Conclusion: Our studies demonstrate that anti-PSMA-targeted liposomes loaded with 225 Ac selectively bind, become internalized, and kill PSMA-expressing cells including endothelial cells induced to express PSMA. These findings-combined with the unique ability of liposomes to be easily tuned, in terms of size and surface modification, for optimizing biodistributions-suggest the potential of PSMA-targeting liposomes encapsulating a-particle emitters for selective antivascular a radiotherapy.
Lateral lipid phase separation of titratable PS or PA lipids and their assembly in domains induced by changes in pH are significant in liposome-based drug delivery: environmentally responsive lipid heterogeneities can be tuned to alter collective membrane properties such as permeability (altering drug release) and surface topography (altering drug carrier reactivity) impacting, therefore, the therapeutic outcomes. At the micrometer scale fluorescence microscopy on giant unilamellar fluid vesicles (GUVs) shows that lowering pH (from 7.0 to 5.0) promotes condensation of titratable PS or PA lipids into beautiful floret-shaped domains in which lipids are tightly packed via hydrogen-bonding and van der Waals interactions. The order of lipid packing within domains increases radially toward the domain center. Lowering pH enhances the lipid packing order, and at pH 5.0 domains appear to be entirely in the solid (gel) phase. Domains phenomenologically comprise a circular "core" cap beyond which interfacial instabilities emerge resembling leaf-like stripes. At pH 5.0 stripes are of almost vanishing Gaussian curvature independent of GUVs' preparation path and in agreement with a general condensation mechanism. Increasing incompressibility of domains is strongly correlated with a larger number of thinner stripes per domain and increasing relative rigidity of domains with smaller core cap areas. Line tension drives domain ripening; however, the final domain shape is a result of enhanced incompressibility and rigidity maximized by domain coupling across the bilayer. Introduction of a transmembrane osmotic gradient (hyperosmotic on the outer lipid leaflet) allows the domain condensation process to reach its maximum extent which, however, is limited by the minimal expansivity of the continuous fluid membrane.
We investigated the feasibility and efficacy of a drug delivery strategy to vascularized cancer that combines targeting selectivity with high uptake by targeted cells and high bioexposure of cells to delivered chemotherapeutics. Targeted lipid vesicles composed of pH responsive membranes were designed to reversibly form phase-separated lipid domains, which are utilized to tune the vesicle's apparent functionality and permeability. During circulation, vesicles mask functional ligands and stably retain their contents. Upon extravasation in the tumor interstitium, ligand-labeled lipids become unmasked and segregated within lipid domains triggering targeting to cancer cells followed by internalization. In the acidic endosome, vesicles burst release the encapsulated therapeutics through leaky boundaries around the phase-separated lipid domains. The pH tunable vesicles contain doxorubicin and are labeled with an anti-HER2 peptide. In vitro, anti-HER2 pH tunable vesicles release doxorubicin in a pH dependent manner, and exhibit 233% increase in binding to HER2-overexpressing BT474 breast cancer cells with lowering pH from 7.4 to 6.5 followed by significant (50%) internalization. In subcutaneous BT474 xenografts in nude mice, targeted pH tunable vesicles decrease tumor volumes by 159% relative to nontargeted vesicles, and they also exhibit better tumor control by 11% relative to targeted vesicles without an unmasking property. These results suggest the potential of pH tunable vesicles to ultimately control tumor growth at relatively lower administered doses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.