This paper describes an ultra-low power SAR ADC for medical implant devices. To achieve the nano-watt range power consumption, an ultra-low power design strategy has been utilized, imposing maximum simplicity on the ADC architecture, low transistor count and matched capacitive DAC with a switching scheme which results in full-range sampling without switch bootstrapping and extra reset voltage. Furthermore, a dual-supply voltage scheme allows the SAR logic to operate at 0.4 V, reducing the overall power consumption of the ADC by 15% without any loss in performance. The ADC was fabricated in 0.13-µm CMOS. In dual-supply mode (1.0 V for analog and 0.4 V for digital), the ADC consumes 53 nW at a sampling rate of 1 kS/s and achieves the ENOB of 9.1 bits. The leakage power constitutes 25% of the 53-nW total power. Index Terms -ADC, analog-to-digital conversion, low-power electronics, successive approximation, leakage power consumption, medical implant devices.
(24)
Abstract-This paper presents an 8-GS/s, 12-bit input ∆Σ DAC with 200-MHz bandwidth in 65-nm CMOS. The high sampling rate is achieved by a two-channel interleaved MASH 1-1 digital ∆Σ modulator with 3-bit output, resulting in a highly digital DAC with only seven current cells. The two-channel interleaving allows the use of a single clock for both the logic and the final multiplexing. This requires each channel to operate at half the sampling rate, which is enabled by a high-speed pipelined MASH structure with robust static logic. Measurement results show that the DAC achieves 200-MHz bandwidth, 26-dB SNDR and -57-dBc IMD3, with a power consumption of 68-mW at 1-V digital and 1.2-V analog supplies. This architecture shows potential for use in transmitter baseband for wideband wireless communication.
This work presents an 11 GS/s 1.1 GHz bandwidth interleaved ∆Σ DAC in 65 nm CMOS for the 60-GHz radio baseband. The high sample rate is achieved by using a two-channel interleaved MASH 1-1 architecture with a 4-bit output resulting in a predominantly digital DAC with only fifteen analog current cells. Two-channel interleaving allows the use of a single clock for the logic and the multiplexing which requires each channel to operate at half sampling rate of 5.5 GHz. To enable this, a look-ahead technique is proposed that decouples the two channels within the integrator feedback path thereby improving the speed as compared to conventional loop-unrolling. Measurement results show that the ∆Σ DAC achieves a 53 dB SFDR, −49 dBc IM3 and 39 dB SNDR within a 1.1 GHz bandwidth while consuming 117 mW from 1 V digital/1.2 V analog supplies. Furthermore, the proposed ∆Σ DAC can satisfy the spectral mask of the IEEE 802.11ad WiGig standard with a second order reconstruction filter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.