While stressful life events are an important cause of psychopathology, most individuals exposed to adversity maintain normal psychological functioning. The molecular mechanisms underlying such resilience are poorly understood. Here, we demonstrate that an inbred population of mice subjected to social defeat can be separated into susceptible and unsusceptible subpopulations that differ along several behavioral and physiological domains. By a combination of molecular and electrophysiological techniques, we identify signature adaptations within the mesolimbic dopamine circuit that are uniquely associated with vulnerability or insusceptibility. We show that molecular recapitulations of three prototypical adaptations associated with the unsusceptible phenotype are each sufficient to promote resistant behavior. Our results validate a multidisciplinary approach to examine the neurobiological mechanisms of variations in stress resistance, and illustrate the importance of plasticity within the brain's reward circuits in actively maintaining an emotional homeostasis.
Circadian rhythms and the genes that make up the molecular clock have long been implicated in bipolar disorder. Genetic evidence in bipolar patients suggests that the central transcriptional activator of molecular rhythms, CLOCK, may be particularly important. However, the exact role of this gene in the development of this disorder remains unclear. Here we show that mice carrying a mutation in the Clock gene display an overall behavioral profile that is strikingly similar to human mania, including hyperactivity, decreased sleep, lowered depression-like behavior, lower anxiety, and an increase in the reward value for cocaine, sucrose, and medial forebrain bundle stimulation. Chronic administration of the mood stabilizer lithium returns many of these behavioral responses to wild-type levels. In addition, the Clock mutant mice have an increase in dopaminergic activity in the ventral tegmental area, and their behavioral abnormalities are rescued by expressing a functional CLOCK protein via viral-mediated gene transfer specifically in the ventral tegmental area. These findings establish the Clock mutant mice as a previously unrecognized model of human mania and reveal an important role for CLOCK in the dopaminergic system in regulating behavior and mood. bipolar disorder ͉ circadian rhythms ͉ dopamine
Previous work has identified alterations in histone acetylation in animal models of drug addiction and depression. However, the mechanisms which integrate drugs and stress with changes in chromatin structure remain unclear. Here, we identify the activity-dependent class II histone deacetylase, HDAC5, as a central integrator of these stimuli with changes in chromatin structure and gene expression. Chronic, but not acute, exposure to cocaine or stress decreases HDAC5 function in the nucleus accumbens (NAc), a major brain reward region, which allows for increased histone acetylation and transcription of HDAC5 target genes. This regulation is behaviorally important, as loss of HDAC5 causes hypersensitive responses to chronic, not acute, cocaine or stress. These findings suggest that proper balance of histone acetylation is a crucial factor in the saliency of a given stimulus and that disruption of this balance is involved in the transition from an acute adaptive response to a chronic psychiatric illness.
Although chronic cocaine-induced changes in dendritic spines on nucleus accumbens (NAc) neurons have been correlated with behavioral sensitization, the molecular pathways governing these structural changes, and their resulting behavioral effects, are poorly understood. The transcription factor, nuclear factor B (NFB), is rapidly activated by diverse stimuli and regulates expression of many genes known to maintain cell structure. Therefore, we evaluated the role of NFB in regulating cocaine-induced dendritic spine changes on medium spiny neurons of the NAc and the rewarding effects of cocaine. We show that chronic cocaine induces NFB-dependent transcription in the NAc of NFB-Lac transgenic mice. This induction of NFB activity is accompanied by increased expression of several NFB genes, the promoters of which show chromatin modifications after chronic cocaine exposure consistent with their transcriptional activation. To study the functional significance of this induction, we used viral-mediated gene transfer to express either a constitutively active or dominant-negative mutant of Inhibitor of B kinase (IKKca or IKKdn), which normally activates NFB signaling, in the NAc. We found that activation of NFB by IKKca increases the number of dendritic spines on NAc neurons, whereas inhibition of NFB by IKKdn decreases basal dendritic spine number and blocks the increase in dendritic spines after chronic cocaine. Moreover, inhibition of NFB blocks the rewarding effects of cocaine and the ability of previous cocaine exposure to increase an animal's preference for cocaine. Together, these studies establish a direct role for NFB pathways in the NAc to regulate structural and behavioral plasticity to cocaine.
Background-Previous research has shown that rats reared in an enriched condition (EC) are more sensitive to the acute effects of amphetamine than rats reared in an isolated condition (IC); yet, EC rats self-administer less amphetamine than IC rats. The present study used cocaine to further explore this environmental enrichment behavioral phenotype, as well as the underlying molecular mechanisms involved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.