We have developed a method to ADP-ribosylate the stimulatory guanine nucleotide-binding protein of adenylate cyclase (GS) in brain membranes by using cholera toxin. In particular, we used isonicotinic acid hydrazide and 3-acetylpyridine adenine dinucleotide to inhibit the potent NAD-glycohydrolase activity of brain membranes, and we used the detergent Triton X-100 (at 0.1%) to improve the accessibility of the toxin and guanine nucleotides used for supporting the ADP-ribosylation. This method reveals that GS is a very abundant protein in membranes derived from calf brain (approximately 30 pmol/mg of protein). In brain, GS exists in large excess over the previously reported amount of the adenylate cyclase catalytic subunit. The modification of GS with an ADP-ribosyl residue (a) elicits a four- to fivefold activation of adenylate cyclase by GTP, (b) increases the stabilization of adenylate cyclase by GTP, and (c) reduces adenylate cyclase activation by fluoride but does not change basal activity, activation by guanosine 5'-(beta, gamma-imido)triphosphate, or the sensitivity of adenylate cyclase to heat-induced denaturation. A correlation between ADP-ribosylation and the alterations in the activation of adenylate cyclase by guanine nucleotides and by fluoride is presented.
Signal-transducing G-proteins are heterotrimers composed of GTP-binding alpha subunits in association with a tightly bound complex of beta and gamma subunits. While the alpha subunits are recognized as a family of diverse structures, beta and gamma subunits have also been found as heterogeneous isoforms. To investigate the diversity and tissue specificity of the beta gamma complexes, we have examined homogeneous oligomeric G-proteins from a variety of sources. The beta and gamma subunits isolated from the major-abundance G-proteins from bovine brain, bovine retina, rabbit liver, human placenta, and human platelets were purified and subjected to biochemical and immunological analysis. Protease mapping and immune recognition revealed an identical profile for each of the two distinctly migrating beta isoforms (beta 36 and beta 35) regardless of tissue or G-protein origin. Digestion with V8 protease revealed four distinct, clearly resolved terminal fragments for beta 36 and two for beta 35. Trypsin and chymotrypsin digestion yielded numerous bands, but again each form had a unique profile with no tissue specificity. Tryptic digestion was found to be conformationally specific with the most resistant structure being the native beta gamma complex. With increasing trypsin, the complex was digested but in a pattern distinct from that for denatured beta. In contrast to the two highly homologous beta structures, examination of this set of proteins revealed at least six distinct gamma peptides. Two unique gamma peptides were found in bovine retinal Gt and three gamma peptides in samples of bovine brain derived Go/Gi. Human placental and platelet Gi samples each contained a unique gamma.(ABSTRACT TRUNCATED AT 250 WORDS)
A 5-month-old infant presented with severe dyspnea and dysphagia resulting from a right-sided cervical mass. At 5 months of age, a large aberrant thymus was excised, resulting in the disappearance of all symptoms. Pathological examination showed normal thymus tissue. Since the preoperative chest X-ray film showed a normal thymic shadow and the T-lymphocyte functions were normal, we conclude that this was not an ectopic gland but an undescended thymic implant.
Gp is a major GTP-binding protein of human placenta and platelets [Evans, T., Brown, M. L., Fraser, E. D., & Northup, J. K. (1986) J. Biol. Chem. 261, 7052-7059]. High-affinity guanine nucleotide binding is associated with a polypeptide migrating identically with H-ras on SDS-PAGE. We have characterized the interactions of preparations of purified human placental Gp with guanine nucleotides in detergent solution. Equilibrium binding studies with [35S]GTP gamma S, [3H]Gpp(NH)p, and [3H]GTP identified a single class of sites with a dissociation constant of 10 +/- 1, 153 +/- 61, and 125 +/- 77 nM for the ligands, respectively. These three ligands were mutually competitive with Ki values consistent with the Kd values from direct binding experiments. Competition for the binding of [3H]Gpp(NH)p was used to determine the specificity of the site. Ki values determined from this assay were 14 nM for GTP gamma S, 143 nM for Gpp(NH)p, 3.3 microM for GDP beta S, 69 nM for GTP, and 64 nM for GDP. ATP, ADP, cAMP, cGMP, and NAD+ had no detectable affinity for this site. While the equilibrium binding data fit well to a single class of sites, association kinetics of these ligands were better fit to two rate constants. Dissociation kinetics, however, were not clearly resolved into two rates.(ABSTRACT TRUNCATED AT 250 WORDS)
Basal activity of adenylate cyclase from the amygdala of sheep brain and the neostriatum of turkey brain decays in two phases at 37 degrees C. The first phase is rapid (t1/2 = 2.3 +/- 0.3 min) and results in the loss of 60-70% of basal activity. The second phase is slow (t1/2 approximately 100 min) during which time the catalytic units denature irreversibly. The GTP analogue guanosine-5' (beta-gamma imino) triphosphate (p[NH]ppG) prevents the rapid decay by stabilizing the enzyme at its initial level of activity and also reactivates the enzyme to initial levels during or immediately following the early phase, indicating that denaturation of neither the guanylnucleotide units nor the catalytic units causes the rapid decline in basal activity. Activation by p[NH]ppG is rapid at 37 degrees C, but the binding of p[NH]ppG to the guanylnucleotide subunit also occurs at nonactivatory temperatures. This is determined by the protection of catalytic units from thermal or N-ethylmaleimide inactivation after extensive washing. Thus, at 25 degrees C all of the catalytic units can be stabilized by saturating p[NH]ppG concentrations. At 0 degree C, 35% of the catalytic units can be stabilized by saturating p[NH]ppG concentrations within 30 s. The half-saturation constant for the binding of p[NH]ppG at 0 degree C is identical to that derived in an assay at 37 degrees C, or after an incubation of the membranes for 10 min at 45 degrees C, when the process of thermal denaturation is 80% complete (K1/2 approximately 3 +/- 2 microM).(ABSTRACT TRUNCATED AT 400 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.