Galleria mellonella larvae are widely used for assessing the virulence of microbial pathogens and for measuring the in vivo activity of antimicrobial agents and produce results comparable to those that can be obtained using mammals. The aim of the work described here was to ascertain the effect of pre-incubation at 15°C for 1, 3, 6 or 10 weeks on the susceptibility of larvae to infection with Candida albicans and Staphylococcus aureus. Larvae infected with C. albicans after 1 week pre-incubation at 15°C showed 73.3 ± 3.3% survival at 24 hours post-infection while those infected after 10 weeks pre-incubation showed 30 ± 3.3% survival (P < 0.01). Larvae infected with S. aureus after 1 week pre-incubation showed 65.5 ± 3.3% survival after 24 hours while those infected after 10 weeks pre-incubation showed 13.3 ± 3.3% (P < 0.001). Analysis of the haemocyte density in larvae pre-incubated for 3-10 weeks showed a reduction in haemocytes over time but a proportionate increase in the density of granular haemocytes in the population as determined by FACS analysis. Proteomic analysis revealed decreased abundance of proteins associated with metabolic pathways (e.g. malate dehydrogenase, fructose-1,6-bisphosphatase, glyceraldehyde-3-phosphate dehydrogenase) and prophenoloxidase. G. mellonella larvae are a useful in vivo model system but the duration of the pre-incubation stage significantly affects their susceptibility to microbial pathogens possibly as a result of altered metabolism.
A potential role for bacteria in the induction of rosacea has been suggested. The aim of this work was to characterise the effect of temperature on the production of immunostimulatory proteins by Bacillus oleronius-a bacterium to which rosacea patients show sera reactivity and which was originally isolated from a Demodex mite from a rosacea patient. The affected skin of rosacea patients is at a higher temperature than unaffected skin, and it was postulated that this might alter the protein expression pattern of B. oleronius. B. oleronius growth was reduced at 37°C compared to 30°C but resulted in increased expression of the immune-reactive 62kDa protein (1.65 fold [P < 0.05]). Proteomic analysis revealed increased abundance of a wide range of proteins involved in the stress response (e.g. stress proteins [21.7-fold increase], phosphocarrier protein HPr [438.5-fold increase], 60 kDa chaperonin [12.6-fold increase]). Proteins decreased in abundance after growth at 37°C included ferredoxin (325-fold decrease) and peptidase (244-fold decrease). This work indicates that the increased skin temperature of rosacea patients may alter the growth and protein production pattern of B. oleronius and lead to the greater production of immuo-stimulatory proteins.
Introduction: Demodex mites are common human ectoparasites found across a broad geographical range. They reside in pilosebaceous units of the skin and feed on sebum, epithelial and glandular cells. D. folliculorum is the more common mite, inhabiting the upper end of the pilosebaceous unit while D. brevis resides deeper in the skin and meibomian glands. Until now, Demodex mites have been obtained by various techniques such as skin scraping, cellophane tape, plucking eyelashes, and also by invasive biopsies. Aim: To assess whether non-invasively collected sebum samples of patients suspected of rosacea or demodicosis are suitable for NGS DNA Demodex analysis. Material and methods: Suspicion of seborrheic dermatitis or rosacea was the inclusion criterion. The study group consisted of 20 males, 1 female, age: 33-83, median: 58. Nasal dorsum was moisturized and an adhesive strip was applied. DNA was isolated from the sebum and sequenced with the use of MiSeq® Reagent Kit v2 and MiSeq® System. Results: Out of 7 patients who were positive by microscopy, 6 were found positive by NGS. Additional 4 patients were found positive only by NGS, adding to a total of ten. The NGS approach showed superior sensitivity compared to light microscopy (63% and 44%, respectively). In 3 patients, both Demodex species were identified by NGS. Conclusions: We believe to have proven that it is possible to study Demodex mites by NGS with sebum as the input sample. Furthermore, it is possible to identify and distinguish Demodex folliculorum from D. brevis in individual patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.