Diversity order is an important measure for the performance of communication systems over MIMO fading channels. In this paper, we prove that in MIMO multiple access systems (or MIMO point-to-point systems with V-BLAST transmission), lattice-reduction-aided decoding achieves the maximum receive diversity (which is equal to the number of receive antennas). Also, we prove that the naive lattice decoding (which discards the out-of-region decoded points) achieves the maximum diversity.
A simple scheme for communication over MIMO broadcast channels is introduced which adopts the lattice reduction technique to improve the naive channel inversion method. Lattice basis reduction helps us to reduce the average transmitted energy by modifying the region which includes the constellation points. Simulation results show that the proposed scheme performs well, and as compared to the more complex methods (such as the perturbation method [1]) has a negligible loss. Moreover, the proposed method is extended to the case of different rates for different users. The asymptotic behavior (SNR−→ ∞) of the symbol error rate of the proposed method and the perturbation technique, and also the outage probability for the case of fixed-rate users is analyzed. It is shown that the proposed method, based on LLL lattice reduction, achieves the optimum asymptotic slope of symbol-error-rate (called the precoding diversity). Also, the outage probability for the case of fixed sum-rate is analyzed.
In Multi-Input Multi-Output (MIMO) systems, Maximum-Likelihood (ML) decoding is equivalent to finding the closest lattice point in an N -dimensional complex space. In general, this problem is known to be NP hard. In this paper, we propose a quasi-maximum likelihood algorithm based on Semi-Definite Programming (SDP). We introduce several SDP relaxation models for MIMO systems, with increasing complexity. We use interior-point methods for solving the models and obtain a near-ML performance with polynomial computational complexity.Lattice basis reduction is applied to further reduce the computational complexity of solving these models. The proposed relaxation models are also used for soft output decoding in MIMO systems. † Coding & Signal Transmission Laboratory (www.cst.uwaterloo.ca),
In Multi-Input Multi-Output (MIMO) systems, Maximum-Likelihood (ML) decoding is equivalent to finding the closest lattice point in an N -dimensional complex space. In general, this problem is known to be NP hard. In this paper, we propose a quasi-maximum likelihood algorithm based on Semi-Definite Programming (SDP). We introduce several SDP relaxation models for MIMO systems, with increasing complexity. We use interior-point methods for solving the models and obtain a near-ML performance with polynomial computational complexity. Lattice basis reduction is applied to further reduce the computational complexity of solving these models 1 .
For a wide class of multi-user systems, a subset of capacity region which includes the corner points and the sum-capacity facet has a special structure known as polymatroid. Multiaccess channels with fixed input distributions and multiple-antenna broadcast channels are examples of such systems. Any interior point of the sum-capacity facet can be achieved by time-sharing among corner points or by an alternative method known as rate-splitting. The main purpose of this paper is to find a point on the sum-capacity facet which satisfies a notion of fairness among active users. This problem is addressed in two cases: (i) where the complexity of achieving interior points is not feasible, and (ii) where the complexity of achieving interior points is feasible. For the first case, the corner point for which the minimum rate of the active users is maximized (max-min corner point) is desired for signaling. A simple greedy algorithm is introduced to find the optimum max-min corner point. For the second case, the polymatroid properties are exploited to locate a rate-vector on the sum-capacity facet which is optimally fair in the sense that the minimum rate among all users is maximized (max-min rate). In the case that the rate of some users can not increase further (attain the max-min value), the algorithm recursively maximizes the minimum rate among the rest of the users. It is shown that the problems of deriving the time-sharing coefficients or rate-spitting scheme can be solved by decomposing the problem to some lower-dimensional subproblems. In addition, a fast algorithm to compute the timesharing coefficients to attain a general point on the sum-capacity facet is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.