Brazil’s large land base is important for global food security but its high dependency on inorganic phosphorus (P) fertilizer for crop production (2.2 Tg rising up to 4.6 Tg in 2050) is not a sustainable use of a critical and price-volatile resource. A new strategic analysis of current and future P demand/supply concluded that the nation’s secondary P resources which are produced annually (e.g. livestock manures, sugarcane processing residues) could potentially provide up to 20% of crop P demand by 2050 with further investment in P recovery technologies. However, the much larger legacy stores of secondary P in the soil (30 Tg in 2016 worth over $40 billion and rising to 105 Tg by 2050) could provide a more important buffer against future P scarcity or sudden P price fluctuations, and enable a transition to more sustainable P input strategies that could reduce current annual P surpluses by 65%. In the longer-term, farming systems in Brazil should be redesigned to operate profitably but more sustainably under lower soil P fertility thresholds.
Exploiting native soil phosphorus (P) and the large reservoirs of residual P accumulated over decades of cultivation, namely “legacy P”, has great potential to overcome the high demand of P fertilisers in Brazilian cropping systems. Long-term field experiments have shown that a large proportion (> 70%) of the surplus P added via fertilisers remains in the soil, mainly in forms not readily available to crops. An important issue is if the amount of legacy P mobilized from soil is sufficient for the crop nutritional demand and over how long this stored soil P can be effectively ‘mined’ by crops in a profitable way. Here we mapped the spatial–temporal distribution of legacy P over the past 50 years, and discussed possible agricultural practices that could increase soil legacy P usage by plants in Brazil. Mineral fertiliser and manure applications have resulted in ~ 33.4 Tg of legacy P accumulated in the agricultural soils from 1967 to 2016, with a current annual surplus rate of 1.6 Tg. Following this same rate, soil legacy P may reach up to 106.5 Tg by 2050. Agricultural management practices to enhance soil legacy P usage by crops includes increasing soil pH by liming, crop rotation, double-cropping, inter-season cover crops, no-tillage system and use of modern fertilisers, in addition to more efficient crop varieties and inoculation with P solubilising microorganisms. The adoption of these practices could increase the use efficiency of P, substantially reducing the new input of fertilisers and thus save up to 31.8 Tg of P fertiliser use (US$ 20.8 billion) in the coming decades. Therefore, exploring soil legacy P is imperative to reduce the demand for mineral fertilisers while promoting long-term P sustainability in Brazil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.