In this paper, the empirical mode decomposition as a signal processing method has been studied to overcome one of its shortcomings. In the previous studies, some improvements have been made on the empirical mode decomposition and it has been applied for condition monitoring of mechanical systems. These improvements include elimination of mode mixing and restraining of end effect in empirical mode decomposition method. In this research, to increase the accuracy of empirical mode decomposition, a new local mean has been proposed in the sifting process. Through the proposed local mean, the overshoot and undershoot problems in defining the local mean of common algorithm are alleviated. Meanwhile, it is capable to separate the components with close frequencies. Through the analysis of simulated signals via the new algorithm, it is shown that the accuracy is improved. Finally, empirical mode decomposition-based fault diagnosis approach has been applied to a vibration signal obtained from a faulty gearbox. The results show that the proposed method can resolve the effects of damage in vibration signals better than the common empirical mode decomposition method and helps for the isolation and localization of the fault.
This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Highlights New formulation for vibration behavior of spiral cylinders is proposed. A general procedure is applied to analyze the effect of boundary conditions. Effect of separation distance in spiral cylinders on natural frequency is studied. New results on vibration characteristics of spiral cylinders are presented. Based on circular cylinders, a new technique is developed for spiral cylinders design.
Carbon nanoscroll (CNS) is a graphene sheet rolled into a spiral structure with great potential for different applications in nanotechnology. In this paper, an equivalent open shell model is presented to study the vibration behavior of a CNS with arbitrary boundary conditions. The equivalent parameters used for modeling the carbon nanotubes are implemented to simulate the CNS. The interactions between the layers of CNS due to van der Waals forces are included in the model. The uniformly distributed translational and torsional springs along the boundaries are considered to achieve a unified solution for different boundary conditions. To study the vibration characteristics of CNS, total energy including strain energy, kinetic energy, and van der Waals energy are minimized using the Rayleigh-Ritz technique. The first-order shear deformation theory has been utilized to model the shell. Chebyshev polynomials of first kind are used to obtain the eigenvalue matrices. The natural frequencies and corresponding mode shapes of CNS in different boundary conditions are evaluated. The effect of electric field in axial direction on the natural frequencies and mode shapes of CNS is investigated. The results indicate that, as the electric field increases, the natural frequencies decrease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.