Introduction Synthesizing new drugs alone is not sufficient to establish advancement in drug therapy. The conventional drug delivery systems are destined to failure, due to many factors, mainly low drug solubility, poor absorption, enzymatic degradation, rapid metabolism, cellular efflux and variability in plasma concentration. 1 Incorporation of lipids in drug delivery has been a trend in the past decades. Lipid-based carriers are composed of phospholipids, cholesterol, cholesterol esters and triglycerides among others. 2 The physiochemical diversity of lipids, their biocompatibility and their resemblance to body tissue constituents offer a promising system for poorly water-soluble and lipophilic drugs. 3 Lipid carriers (LCs) provide several advantages that enable it to be an ideal vehicle for drug delivery. Namely; it can be manipulated according to product requirements whether its disease conditions, route of administration, stability, toxicity or efficacy. Besides, lipid-based formulations (LBFs) can provide a controlled release delivery based on their biocompatibility with body tissue after administration, it's not susceptible to erosion phenomena, the feasibility of scaling up, 4 moreover, it provides enhanced drug loading, ability to carry both lipophilic and hydrophilic drugs and stability. However, LCs face certain limitations such as, lipid crystallization that leads to polymorphism with different drug loading capacity, different shapes, and various kinetic distributions. High-pressure homogenization technique is most commonly used and it might cause drug degradation in high molecular weight compounds. Lipid-based carriers are recognized as safe and efficient hence they have been used as alluring candidates for pharmaceutical, as well as vaccines, diagnostics, and nutraceutical formulations. Therefore, lipid-based drug delivery (LBDD) systems have gained much importance in recent years due to their ability to improve the solubility and bioavailability of drugs with poor water solubility. Self-emulsifying drug delivery systems which belongs to LBFs are efficient, sophisticated, and more patient compliant formulation method for poorly water soluble drugs. It may enhance drug solubility, dissolution behavior in the GIT, gut permeability and thus may increase the absorption of the poorly water soluble model drug. This paper illustrates different types of LBFs to be precise, emulsions, vesicular systems, and lipid particulate systems and their subcategories, focusing on self-nanoemulsifying systems and their applications in the pharmaceutical field. Materials and Methods In this review, related articles and research papers from different reliable researchers and database such as Elsevier, Springer and MDPI were collected and discussed. The search was constructed based on the following keywords: lipid-based drug delivery, self-nanoemulsifying system, lipid vesicular systems.
The epoch of nanotechnology has authorized novel investigation strategies in the area of drug delivery. Liposomes are attractive biomimetic nanocarriers characterized by their biocompatibility, high loading capacity, and their ability to reduce encapsulated drug toxicity. Nevertheless, various limitations including physical instability, lack of site specificity, and low targeting abilities have impeded the use of solo liposomes. Metal nanocarriers are emerging moieties that can enhance the therapeutic activity of many drugs with improved release and targeted potential, yet numerous barriers, such as colloidal instability, cellular toxicity, and poor cellular uptake, restrain their applicability in vivo. The empire of nanohybrid systems has shelled to overcome these curbs and to combine the criteria of liposomes and metal nanocarriers for successful theranostic delivery. Metallic moieties can be embedded or functionalized on the liposomal systems. The current review sheds light on different liposomal-metal nanohybrid systems that were designed as cellular bearers for therapeutic agents, delivering them to their targeted terminus to combat one of the most widely recognized diseases, cancer.
Background Gastric ulcer is a prevalent disease with various etiologies, including non-steroidal anti-inflammatory drugs and alcohol consumption. This study aimed to explore the dual gastric protection effect of tadalafil and limonene as a self-nanoemulsifying system (SNES)-based orodispersible tablets. Methods Tadalafil-loaded limonene-based SNES was prepared, and the optimum formula was characterized in terms of particle size (PS), polydispersity index (PDI), and zeta potential (ZP) then loaded on various porous carriers to formulate lyophilized orodispersible tablets (ODTs). The ODTs were evaluated via determining hardness, friability, content uniformity, wetting, and disintegration time. The selected ODT was examined for its gastric ulcer protective effect against alcohol-induced ulcers in rat model. Ulcer score and ulcer index were computed for rats stomachs that were inspected macroscopically and histopathologically. Results The prepared SNES had droplet size of 104 nm, polydispersity index of 0.2, and zeta potential of −15.4 mV. From the different ODTs formulated, the formula with superior wetting time: 23.67 s, outstanding disintegration time: 28 s, accepted hardness value: 3.11 kg/cm 2 and friability: 0.6% was designated. A significant gastroprotective effect of the unloaded and tadalafil-loaded ODTs was recognized compared to the omeprazole pre-treated group. Moreover, the histopathological analysis displayed very mild inflammation in the limonene-based ODTs group and intact structure in the tadalafil-loaded pre-treated animals. Conclusion Limonene gastroprotective effect functioned along with tadalafil in the form of SNES-incorporated ODTs could serve as a promising revenue for better efficacy in gastric ulcer prevention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.