Bacterial cellulose used for many membrane applications such as artificial dura mater membrane. This research aimed to determine the effects of glycerol concentration variation as plasticizer on physical and biological characteristics of bacterial cellulose-chitosan biocomposite membrane.Bacterial cellulose-glycerol membrane was soaked for six hours in 0.5% chitosan solution together with glycerol at variuos concentrations of 0.5%, 1%, 1.5%, and 2% using freeze dry method. Based on results of FTIR test, there is a crosslinking between-OH groups in bacterial cellulose and chitosan-glycerol. Meanwhile, results of the physical characteristic tests showed tensile strength value of 29.40 MPa for the control sample and 142.24 MPa for samples of bacterial cellulose-chitosan added 2% glycerol. It indicates that the addition of glycerol can increase tensile strength value. Results of morphological test, depicted pore size of 93.30-216 nm. Results of the degradation test demonstrated that samples added 2% glycerol degraded as much as 50.15% for 2 weeks. Meanwhile, results of the cytotoxicity test indicated that all of samples were not toxic. Finally, it can be concluded that the best result of the characterization analysis was found on the samples added 2% glycerol although they have not yet fulfilled the standard value of artificial dura mater.
Porosity is one of the parameters of scaffold pore structure that must be developed using paraffin wax as a synthetic polymer for making porous bioceramics carbonated hydroxyapatite (CHA). This study fabricated CHA based on abalone mussel shells (Halioitis asinina); CHA/paraffin wax nanocomposite scaffolds were synthesized using paraffin wax with concentration variations of 10, 20, and 30 wt.%. The energy-dispersive X-ray spectroscopy (EDS) results showed that the Ca/P molar ratio of CHA was 1.72, which approaches the natural bone. The addition of paraffin wax in all concentration variation treatments caused the crystallographic properties of the CHA/paraffin wax nanocomposite scaffolds to decrease. The results of pore analysis suggest that the high concentration of paraffin wax in the CHA suspension is involved in the formation of more pores on the surface of the scaffold, but only CHA/paraffin wax 30 wt.% had a scaffold with potential to be used in media with a cellular growth orientation. The micropore analysis was also supported by the cell viability assay results for CHA/paraffin wax 30 wt.% nanocomposite scaffold, where serial doses of scaffold concentrations to mouse osteoblast cells were secure. Overall, based on this analysis, the CHA/paraffin wax scaffold can be a candidate for bone tissue engineering.
Synthetic scaffolding for bone tissue engineering (BTE) has been widely utilized. The scaffold for BTE requires sufficient porosity as a template for bone cell development and growth so that it can be used in the treatment of bone defects and fractures. Nevertheless, the porosity significantly influences the compressive strength of the scaffold. Hence, controlling the porosity is a pivotal role to obtain a proper scaffold for practical BTE application. Herein, we fabricated the nanocomposite-based scaffold utilizing nano-hydroxyapatite (n-HA). The scaffold was prepared in combination with chitosan (Ch) and carboxymethyl cellulose (CMC). The ratios of n-HA, Ch, and CMC used were 40:60:0, 40:55:5, 40:50:10, 40:45:15, and 40:40:20, respectively. By controlling the Ch and CMC composition, we can tune the porosity of the nanocomposite. We found that the interpolation of the CMC prevails, as a crosslinker reinforces the nanocomposite. In addition, the binding to Ch enhanced the compressive strength of the scaffold. Thermal characteristics revealed the coefficient of thermal expansion decreases with increasing CMC content. The nanocomposite does not expand at 25–75 °C, which is suitable for human body temperature. Therefore, this nanocomposite-based scaffold is feasible for BTE application.
Anterior Cruciate Ligament (ACL) injuries are becoming more prevalent in athletes. Anterior Cruciatum Ligament Reconstruction (ACLR) surgery was used to treat ACL injuries and resulted in a recurrence rate of 94% due to the biomechanically repaired tissue being weaker than the original tissue. As a result, biodegradable artificial ligaments must be developed that can withstand mechanical stress during neoligament formation and stabilize the ACL. The purpose of this study is to determine the effect of composition variations in polylactic acid (PLA) and polycaprolactone (PCL) used as ACL nanofiber scaffolds on ultimate tensile strength (UTS) and modulus of elasticity, fiber diameter, cytotoxicity level, and degradation level, as well as the PLA-PCL concentration that provides the best value as an ACL scaffold. Electrospinning was used to fabricate the nanofiber scaffold with the following PLA-PCL compositions: A (100:0), B (85:15), C (80:20), D (70:30), and E (0:100) (wt%). The functional group test revealed no new peaks in any of the samples, and the ester group could be identified in the C-O bond at wave numbers 1300–1100 cm−1 and in the C=O bond at wave numbers 1750–1730 cm−1. The average fiber diameter, as determined by SEM morphology, is between 1000 and 2000 nm. The unbraided sample had a UTS range of 1.578–4.387 MPa and an elastic modulus range of 8.351–141.901 MPa, respectively, whereas the braided sample had a range of 0.879–1.863 MPa and 2.739–4.746 MPa. The higher the PCL composition, the lower the percentage of viable cells and the faster the sample degrades. All samples had a cell viability percentage greater than 60%, and samples C, D, and E had a complete degradation period greater than six months. The ideal scaffold, Sample C, was composed of PLA-PCL 80:20 (wt%), had an average fiber diameter of 827 ± 271 nm, a living cell percentage of 97.416 ± 5.079, and a degradation time of approximately 219 days.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.