Background and Aim: Lack of information about the antibiotic resistance in commensal Escherichia coli from Algerian livestock prompted us to do this study to determine the different levels of antimicrobial susceptibility, antibiotic multidrug resistance (MDR) rates, and phenotypical patterns of E. coli strains isolated from healthy cattle to control the spread of animal-resistant strains to humans and the environment. Materials and Methods: A total of 198 cattle were sampled (swabbed in the rectum), reared in the farms of Souk Ahras, Tebessa, and Oum el Bouaghi governorates of Eastern Algeria. Isolation of E. coli strains was performed on MacConkey agar and then the different strains were identified to the species level using an API 20E identification kit. Antimicrobial susceptibility was determined using a panel of 13 antibiotic disks by disk diffusion method on Mueller-Hinton agar. The double-disk synergy test with cefotaxime and amoxicillin-clavulanate disks was used for the screening of extended-spectrum beta-lactamase phenotypes. For colistin susceptibility, the minimum inhibitory concentration was examined using broth microdilutions technique. Results: The results showed that among the 198 E. coli isolates, elevated resistance rates were observed for ampicillin (59.09%) and tetracycline (43.43%), and moderate resistance rates for cephalothin (16.16%), trimethoprim/sulfamethoxazole (15.15%), and amoxicillin/clavulanate (11.62%); however, low resistance rates were found for nalidixic acid (8.08%), ciprofloxacin (7.07%), kanamycin (6.56%), cefotaxime (4.54%), chloramphenicol (4.04%), nitrofurantoin (2.52%), cefoxitin (2.02%), gentamycin (1.01%), and no resistance to colistin. However, nine extended-spectrum β-lactamases producing E. coli strains were identified. Forty-four different patterns were determined, indicating a wide variety of resistance, ranging from one antimicrobial to a combination of 10. Analysis of coresistances revealed that 63 isolates (31.82%) were susceptible to all antibiotics used in the study, 42 isolates (21.21%) were resistant to one antibiotic, 43 isolates (21.72%) were resistant to two antibiotics, 24 isolates (12.12%) resistant to three antibiotics, 26 isolates (13.13%) were resistant for more than three agents, and 45 isolates (22.73%) were MDR (which means resistant to three or more families of antibiotics). Conclusion: This study demonstrates that commensal E. coli remains a potential source of antibiotic resistance in view of the high prevalence of antimicrobial resistance. The vast range of MDR phenotypes, especially extended-spectrum β-lactamases producing strains, emphasizes the urgent requirement to adopt measures to control the use of antimicrobials, in particular, by private veterinarians, as well as the strengthening of veterinary surveillance networks for antimicrobial resistance to control the spread of MDR bacteria from animals to humans and the environment.
Aim:An investigation was carried out to assess the occurrence of diseases, its method of diagnosis, and commonly used drugs in poultry farms in North-Eastern regions of Algeria.Materials and Methods:A total of 265 veterinary doctors were surveyed to obtain information on the dominant diseases, its frequency of occurrence, method of diagnosis, and commonly used drugs in poultry farms.Results:A study revealed that about 68% of bacterial diseases are due to colibacillosis, mycoplasmosis, and salmonellosis, 22% of viral diseases are due to Newcastle, Gumboro, and infectious bronchitis, and 10% others including coccidiosis and ascites syndrome. The study also showed that about 57% of cases were diagnosed by clinical signs, 36% by necropsy findings, and the remaining 7% through therapeutic and laboratory analysis. Antibiotics, a predominance of the anarchic veterinary drugs, were massively used to control the diseases. Hence, there is a need for strict regulations on the use of veterinary drugs to guarantee food safety.Conclusion:These results remain non-exhaustive but contribute strongly to determine the status of health of the birds in the region.
Present study consisted of performing a meta-analysis on data about the detection of antibiotic residues in chicken meat achieved from all over the researches with a wide collection and very strict selection criteria of data. The databases were searched quantitative inputs from the available scientific publications using important keywords, in order to evaluate all studies about antibiotic residue and detection methods and the reliability of the results obtained by the international researchers. Then an advanced statistical analysis on collected data was done, the first phase was a descriptive study of positive and negative cases followed by a modeling of two cases with a prediction of the values obtained and ended with an analysis of the main compounds (population size, residue detection methods and positive case rates). All performed steps are reported in detail. The results indicated that the accuracy of the detection technique is a factor that influenced on reports of residues, and caused differences in reports, there are still antibiotic residues in meat of intensively broiler chicken farms (45. 26% of the samples analysed are positive), It is concluded that residue detection requires a high-precision qualitative analysis protocol.
The article's abstract is no available.
The objective of this study is to compare the normal macro and microscopic appearance of the liver in two very different species, one is an omnivorous mammal; the wild boar and the other belongs to the family of poultry; broiler chicken from the region of Bouhmama (Khenchela). Materials and methods: Eight broilers (58 days of age) and eight wild boars were included in the experiment to obtain information about the morpho-histological appearances of liver in two species.results: There is a big difference in the liver appearance between the two species, in the wild boar it is of firm consistency with a tiger aspect and divided into four lobes, whereas in the broiler, the liver is brown and sometimes pale during the first 10-14 days, so it was divided into two lobes. Concerning the liver parenchyma, we used the Russian LOMBO MBS-10 stereo microscope, our results showed that the liver parenchyma was well developed in wild boar than in broiler chickens whereas, in broiler chickens; an excessive development of the sinus; the latter were less developed in the wild boar. conclusion: The macroscopic observation showed a marked difference in liver between the two species. The microscopic examination of liver showed that the parenchyma is less pronounced in broilers while the sinuses were highly developed in the wild boar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.