In many brain areas, sensory responses are heavily modulated by factors including attentional state, context, reward history, motor preparation, learned associations, and other cognitive variables. Modelling the effect of these modulatory factors on sensory responses has proven challenging, mostly due to the time-varying and nonlinear nature of the underlying computations. Here we present a computational model capable of capturing and dissociating multiple time-varying modulatory effects on neuronal responses on the order of milliseconds. The model’s performance is tested on extrastriate perisaccadic visual responses in nonhuman primates. Visual neurons respond to stimuli presented around the time of saccades differently than during fixation. These perisaccadic changes include sensitivity to the stimuli presented at locations outside the neuron’s receptive field, which suggests a contribution of multiple sources to perisaccadic response generation. Current computational approaches cannot quantitatively characterize the contribution of each modulatory source in response generation, mainly due to the very short timescale on which the saccade takes place. In this study, we use a high spatiotemporal resolution experimental paradigm along with a novel extension of the generalized linear model framework (GLM), termed the sparse-variable GLM, to allow for time-varying model parameters representing the temporal evolution of the system with a resolution on the order of milliseconds. We used this model framework to precisely map the temporal evolution of the spatiotemporal receptive field of visual neurons in the middle temporal area during the execution of a saccade. Moreover, an extended model based on a factorization of the sparse-variable GLM allowed us to disassociate and quantify the contribution of individual sources to the perisaccadic response. Our results show that our novel framework can precisely capture the changes in sensitivity of neurons around the time of saccades, and provide a general framework to quantitatively track the role of multiple modulatory sources over time.
Gallium (Ga)-based liquid metal materials have emerged as a promising material platform for soft bioelectronics. Unfortunately, Ga has limited biostability and electrochemical performance under physiological conditions, which can hinder the implementation of its use in bioelectronic devices. Here, an effective conductive polymer deposition strategy on the liquid metal surface to improve the biostability and electrochemical performance of Ga-based liquid metals for use under physiological conditions is demonstrated. The conductive polymer [poly(3,4-ethylene dioxythiophene):tetrafluoroborate]-modified liquid metal surface significantly outperforms the liquid metal.based electrode in mechanical, biological, and electrochemical studies. In vivo action potential recordings in behaving nonhuman primate and invertebrate models demonstrate the feasibility of using liquid metal electrodes for high-performance neural recording applications. This is the first demonstration of single-unit neural recording using Ga-based liquid metal bioelectronic devices to date. The results determine that the electrochemical deposition of conductive polymer over liquid metal can improve the material properties of liquid metal electrodes for use under physiological conditions and open numerous design opportunities for next-generation liquid metal-based bioelectronics.
Saccadic eye movements (saccades) disrupt the continuous flow of visual information, yet our perception of the visual world remains uninterrupted. Here we assess the representation of the visual scene across saccades from single-trial spike trains of extrastriate visual areas, using a combined electrophysiology and statistical modeling approach. Using a model-based decoder we generate a high temporal resolution readout of visual information, and identify the specific changes in neurons’ spatiotemporal sensitivity that underly an integrated perisaccadic representation of visual space. Our results show that by maintaining a memory of the visual scene, extrastriate neurons produce an uninterrupted representation of the visual world. Extrastriate neurons exhibit a late response enhancement close to the time of saccade onset, which preserves the latest pre-saccadic information until the post-saccadic flow of retinal information resumes. These results show how our brain exploits available information to maintain a representation of the scene while visual inputs are disrupted.
In addition to being quite powerful in encoding time-varying response modulations, this general framework also enables a readout of the neural code while dissociating the influence of other nonstimulus covariates. This framework will advance our ability to understand sensory processing in higher brain areas when modulated by several behavioral or cognitive variables.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.