Robust optimization is a methodology that has gained a lot of attention in the recent years. This is mainly due to the simplicity of the modeling process and ease of resolution even for large scale models. Unfortunately, the second property is usually lost when the cost function that needs to be "robustified" is not concave (or linear) with respect to the perturbing parameters. In this paper, we study robust optimization of sums of piecewise linear functions over polyhedral uncertainty set. Given that these problems are known to be intractable, we propose a new scheme for constructing conservative approximations based on the relaxation of an embedded mixed-integer linear program and relate this scheme to methods that are based on exploiting affine decision rules. Our new scheme gives rise to two tractable models that respectively take the shape of a linear program and a semi-definite program, with the latter having the potential to provide solutions of better quality than the former at the price of heavier computations. We present conditions under which our approximation models are exact. In particular, we are able to propose the first exact reformulations for a robust (and distributionally robust) multi-item newsvendor problem with budgeted uncertainty set and a reformulation for robust multi-period inventory problems that is exact whether the uncertainty region reduces to a L1-norm ball or to a box. An extensive set of empirical results will illustrate the quality of the approximate solutions that are obtained using these two models on randomly generated instances of the latter problem.
In this article, we discuss an alternative method for deriving conservative approximation models for two-stage robust optimization problems. The method mainly relies on a linearization scheme employed in bilinear programming; therefore, we will say that it gives rise to the linearized robust counterpart models. We identify a close relation between this linearized robust counterpart model and the popular affinely adjustable robust counterpart model. We also describe methods of modifying both types of models to make these approximations less conservative. These methods are heavily inspired by the use of valid linear and conic inequalities in the linearization process for bilinear models. We finally demonstrate how to employ this new scheme in location-transportation and multi-item newsvendor problems to improve the numerical efficiency and performance guarantees of robust optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.