The geopolymer cement is a suitable alternative material for Portland cement due to their environmental compatibility, low curing temperature, and high strength. In this research, Kaolin was used as a raw material for the construction of a geopolymer cement, while sodium hydroxide was an alkali hydroxide. Kaolin is calcined at 750 °C to obtain meta-kaolin. Geopolymer samples were prepared at various curing temperatures (25, 50, and 75 °C), different curing times (3, 7, 21, 28, and 60 days) and with different activator ratios (0.6-0.9). The thermal analysis of kaolin was done via DTA/TGA. Investigation on the geopolymer cement structure and phases were performed using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and magic angle spinning nuclear magnetic resonance (MAS-NMR). Also, the effects of temperature and time of curing and Na2O/SiO2 molar ratio were studied. The results showed that the maximum compressive strength was 115MPa, which obtained at a molar ratio of Na2O/SiO2=0.9, a curing time of 60 days, and a curing temperature of 75°C. The microstructure of cement was studied using scanning electron microscopy (SEM).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.