Organic and printed electronics technologies require conductors with a work function that is sufficiently low to facilitate the transport of electrons in and out of various optoelectronic devices. We show that surface modifiers based on polymers containing simple aliphatic amine groups substantially reduce the work function of conductors including metals, transparent conductive metal oxides, conducting polymers, and graphene. The reduction arises from physisorption of the neutral polymer, which turns the modified conductors into efficient electron-selective electrodes in organic optoelectronic devices. These polymer surface modifiers are processed in air from solution, providing an appealing alternative to chemically reactive low-work function metals. Their use can pave the way to simplified manufacturing of low-cost and large-area organic electronic technologies.
Solar energy is potentially the largest source of renewable energy at our disposal, but significant advances are required to make photovoltaic technologies economically viable and, from a life-cycle perspective, environmentally friendly, and consequently scalable. Cellulose nanomaterials are emerging high-value nanoparticles extracted from plants that are abundant, renewable, and sustainable. Here, we report on the first demonstration of efficient polymer solar cells fabricated on optically transparent cellulose nanocrystal (CNC) substrates. The solar cells fabricated on the CNC substrates display good rectification in the dark and reach a power conversion efficiency of 2.7%. In addition, we demonstrate that these solar cells can be easily separated and recycled into their major components using low-energy processes at room temperature, opening the door for a truly recyclable solar cell technology. Efficient and easily recyclable organic solar cells on CNC substrates are expected to be an attractive technology for sustainable, scalable, and environmentally-friendly energy production.
We report on the photovoltaic properties of inverted polymer solar cells where the transparent electron-collecting electrode is formed by a ZnO-modified indium−tin oxide (ITO) electrode. The ZnO layers were deposited by atomic layer deposition (ALD) with varying thicknesses from 0.1 to 100 nm. The work function, surface roughness, and morphology of ITO/ZnO were found to be independent of the ZnO thickness. However, the device performance was found to be strongly dependent on a critical ZnO thickness, around 10 nm. Below the critical thickness the device performance was degraded because of the appearance of a “kink” in the current−voltage characteristics. The kink features became less pronounced after ultraviolet (UV) exposure. This was attributed to oxygen desorption, leading to an increased conductivity of the ZnO layer. At and above this critical thickness, the device performance significantly improved and no longer depended strongly on the thickness of the ZnO layer, in agreement with optical simulations. Instead, these optical simulations showed that the thickness of the active layer plays a more important role than the thickness of the ZnO layer in optimizing the photovoltaic properties of inverted solar cells. Inverted polymer solar cells with an increased thickness of the active layer showed a power conversion efficiency (PCE) of 3.06% estimated for AM1.5G, a 100 mW cm−2 illumination.
A new solution-processable small-molecule containing electron-poor naphthalene diimide and tetrazine moieties has been synthesized. The optimized spin-coated n-channel OFETs on glass substrate shows electron mobility value up to 0.15 cm(2) V(-1) s(-1) . Inkjet-printed OFETs are fabricated in ambient atmosphere on flexible plastic substrates, which exhibits an electron mobility value up to 0.17 cm(2) V(-1) s(-1) and also shows excellent environmental and operational stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.