Organic and printed electronics technologies require conductors with a work function that is sufficiently low to facilitate the transport of electrons in and out of various optoelectronic devices. We show that surface modifiers based on polymers containing simple aliphatic amine groups substantially reduce the work function of conductors including metals, transparent conductive metal oxides, conducting polymers, and graphene. The reduction arises from physisorption of the neutral polymer, which turns the modified conductors into efficient electron-selective electrodes in organic optoelectronic devices. These polymer surface modifiers are processed in air from solution, providing an appealing alternative to chemically reactive low-work function metals. Their use can pave the way to simplified manufacturing of low-cost and large-area organic electronic technologies.
Parkinson’s disease (PD) is a chronic and progressive neurodegeneration of dopamine neurons in the substantia nigra. The reason for the death of these neurons is unclear; however, studies have demonstrated the potential involvement of mitochondria, endoplasmic reticulum, α-synuclein or dopamine levels in contributing to cellular oxidative stress as well as PD symptoms. Even though those papers had separately described the individual roles of each element leading to neurodegeneration, recent publications suggest that neurodegeneration is the product of various cellular interactions. This review discusses the role of oxidative stress in mediating separate pathological events that together, ultimately result in cell death in PD. Understanding the multi-faceted relationships between these events, with oxidative stress as a common denominator underlying these processes, is needed for developing better therapeutic strategies.
The aims of this study were to determine how custom-fit compression shorts affect athletic performance and to examine the mechanical properties of the shorts. Ten male and 10 female track athletes on a university's nationally competitive track team, specializing in sprint or jump events, participated in the study. Testing utilized the compression shorts with loose-fitting gym shorts as the control garment. Several significant effects were revealed for the custom-fit compressive garment. Although 60 m sprint time was not affected, hip flexion angle was reduced. Skin temperature increased more and at a faster rate during a warm-up protocol. Muscle oscillation was decreased during vertical jump landing. Countermovement vertical jump height increased when the participants were wearing the custom-fit compression garment. In materials testing, the elasticity of the compressive garment provides increased flexion and extension torque at the end range of extension and flexion, respectively, and may assist the hamstrings in controlling the leg at the end of the swing phase in sprinting. The compressive garment significantly reduced impact force by 27% compared with American football pants alone. Through various mechanisms, these findings may translate into an effect on athletic performance and a reduction in injuries.
The purpose of this study was to examine the relative importance of physiological characteristics during firefighting performance, as assessed by the Candidate Physical Ability Test (CPAT). Participants included professional and volunteer firefighters, ages 18-39 (n=33). Muscle strength, muscle endurance, muscle power, body composition, aerobic capacity, anaerobic fitness, and the cardiovascular response to stairclimbing were assessed to determine the physiological characteristics of the participants. To quantify firefighting performance, the CPAT was administered by members of the fire service.Absolute and relative mean power during Wingate anaerobic cycling test (WAnT), relative peak power during WAnT, and absolute maximal oxygen uptake (VO 2 max) were significantly higher in those who passed the CPAT (n=18), compared to those who failed (n=15) (P < 0.01). Absolute and relative mean power during WAnT, fatigue index during WAnT, absolute VO 2 max, upper body strength, and the heart rate response to stairclimbing were all significantly related to CPAT performance time (all P < 0.01).However, absolute VO 2 max and anaerobic fatigue resistance during WAnT combined were the best predictors of total CPAT performance (Adj. R 2 = 0.817; P < 0.001).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.