BackgroundOne of the tasks in the 2017 iDASH secure genome analysis competition was to enable training of logistic regression models over encrypted genomic data. More precisely, given a list of approximately 1500 patient records, each with 18 binary features containing information on specific mutations, the idea was for the data holder to encrypt the records using homomorphic encryption, and send them to an untrusted cloud for storage. The cloud could then homomorphically apply a training algorithm on the encrypted data to obtain an encrypted logistic regression model, which can be sent to the data holder for decryption. In this way, the data holder could successfully outsource the training process without revealing either her sensitive data, or the trained model, to the cloud.MethodsOur solution to this problem has several novelties: we use a multi-bit plaintext space in fully homomorphic encryption together with fixed point number encoding; we combine bootstrapping in fully homomorphic encryption with a scaling operation in fixed point arithmetic; we use a minimax polynomial approximation to the sigmoid function and the 1-bit gradient descent method to reduce the plaintext growth in the training process.ResultsOur algorithm for training over encrypted data takes 0.4–3.2 hours per iteration of gradient descent.ConclusionsWe demonstrate the feasibility but high computational cost of training over encrypted data. On the other hand, our method can guarantee the highest level of data privacy in critical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.