The engineering of thermostable enzymes is receiving increased attention. The paper, detergent, and biofuel industries, in particular, seek to use environmentally friendly enzymes instead of toxic chlorine chemicals. Enzymes typically function at temperatures below 60°C and denature if exposed to higher temperatures. In contrast, a small portion of enzymes can withstand higher temperatures as a result of various structural adaptations. Understanding the protein attributes that are involved in this adaptation is the first step toward engineering thermostable enzymes. We employed various supervised and unsupervised machine learning algorithms as well as attribute weighting approaches to find amino acid composition attributes that contribute to enzyme thermostability. Specifically, we compared two groups of enzymes: mesostable and thermostable enzymes. Furthermore, a combination of attribute weighting with supervised and unsupervised clustering algorithms was used for prediction and modelling of protein thermostability from amino acid composition properties. Mining a large number of protein sequences (2090) through a variety of machine learning algorithms, which were based on the analysis of more than 800 amino acid attributes, increased the accuracy of this study. Moreover, these models were successful in predicting thermostability from the primary structure of proteins. The results showed that expectation maximization clustering in combination with uncertainly and correlation attribute weighting algorithms can effectively (100%) classify thermostable and mesostable proteins. Seventy per cent of the weighting methods selected Gln content and frequency of hydrophilic residues as the most important protein attributes. On the dipeptide level, the frequency of Asn-Glu was the key factor in distinguishing mesostable from thermostable enzymes. This study demonstrates the feasibility of predicting thermostability irrespective of sequence similarity and will serve as a basis for engineering thermostable enzymes in the laboratory.
The prevalence of multi_drug therapies has been increasing in recent years, particularly among the elderly who are suffering from several diseases. However, unexpected Drug_Drug interaction (DDI) can cause adverse reactions or critical toxicity, which puts patients in danger. As the need for multi_drug treatment increases, it's becoming increasingly necessary to discover DDIs. Nevertheless, DDIs detection in an extensive number of drug pairs, both in-vitro and in-vivo, is costly and laborious. Therefore, DDI identification is one of the most concerns in drug-related researches. In this paper, we propose GNN-DDI, a deep learning-based method for predicting DDI-associated events in two stages. In the first stage, we collect the drugs information from different sources and then integrate them through the formation of an attributed heterogeneous network and generate a drug embedding vector based on different drug interaction types and drug attributes. In the second stage, we aggregate the representation vectors then predictions of the DDIs and their events are performed through a deep multi-model framework. Various evaluation results show that the proposed method can outperform state-of-the methods in the prediction of drug-drug interaction-associated events. The experimental results indicate that producing the drug's representations based on different drug interaction types and attributes is efficient and effective and can better show the intrinsic characteristics of a drug.
Considering the roles of protein complexes in many biological processes in the cell, detection of protein complexes from available protein-protein interaction (PPI) networks is a key challenge in the post genome era. Despite high dynamicity of cellular systems and dynamic interaction between proteins in a cell, most computational methods have focused on static networks which cannot represent the inherent dynamicity of protein interactions. Recently, some researchers try to exploit the dynamicity of PPI networks by constructing a set of dynamic PPI subnetworks correspondent to each time-point (column) in a gene expression data. However, many genes can participate in multiple biological processes and cellular processes are not necessarily related to every sample, but they might be relevant only for a subset of samples. So, it is more interesting to explore each subnetwork based on a subset of genes and conditions (i.e., biclusters) in a gene expression data. Here, we present a new method, called BiCAMWI to employ dynamicity in detecting protein complexes. The preprocessing phase of the proposed method is based on a novel genetic algorithm that extracts some sets of genes that are co-regulated under some conditions from input gene expression data. Each extracted gene set is called bicluster. In the detection phase of the proposed method, then, based on the biclusters, some dynamic PPI subnetworks are extracted from input static PPI network. Protein complexes are identified by applying a detection method on each dynamic PPI subnetwork and aggregating the results. Experimental results confirm that BiCAMWI effectively models the dynamicity inherent in static PPI networks and achieves significantly better results than state-of-the-art methods. So, we suggest BiCAMWI as a more reliable method for protein complex detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.