The prevalence of multi_drug therapies has been increasing in recent years, particularly among the elderly who are suffering from several diseases. However, unexpected Drug_Drug interaction (DDI) can cause adverse reactions or critical toxicity, which puts patients in danger. As the need for multi_drug treatment increases, it's becoming increasingly necessary to discover DDIs. Nevertheless, DDIs detection in an extensive number of drug pairs, both in-vitro and in-vivo, is costly and laborious. Therefore, DDI identification is one of the most concerns in drug-related researches. In this paper, we propose GNN-DDI, a deep learning-based method for predicting DDI-associated events in two stages. In the first stage, we collect the drugs information from different sources and then integrate them through the formation of an attributed heterogeneous network and generate a drug embedding vector based on different drug interaction types and drug attributes. In the second stage, we aggregate the representation vectors then predictions of the DDIs and their events are performed through a deep multi-model framework. Various evaluation results show that the proposed method can outperform state-of-the methods in the prediction of drug-drug interaction-associated events. The experimental results indicate that producing the drug's representations based on different drug interaction types and attributes is efficient and effective and can better show the intrinsic characteristics of a drug.
The prevalence of multi_drug therapies has been increasing in recent years, particularly among the elderly who are suffering from several diseases. However, unexpected Drug_Drug interaction (DDI) can cause adverse reactions or critical toxicity, which puts patients in danger. As the need for multi_drug treatments increases, it's becoming increasingly necessary to discover DDIs. Nevertheless, the DDIs detection in an extensive number of drug pairs, both in-vitro and in-vivo, is costly and laborious, Therefore, DDI identification is one of the most concerns in drug-related researches. In this paper, we propose GNN-DDI, a deep learning-based method for predicting DDI-associated events in two stages. In the first stage, it collects drugs information from different sources then integrates them through the formation of an attributed heterogeneous network. In the second stage, predictions of the DDIs and their events are performed through a deep multi-model framework. Various evaluation results show that the proposed method can outperform state-of-the methods in the prediction of drug-drug interaction-associated events. The experimental results indicate that using different data sources and integrating them through an attributed heterogeneous network for producing the node's representations is efficient and effective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.