Conspectus CO 2 , HCO 3 – , and CO 3 2– are present in all aqueous media at pH > 4 if no major effort is made to remove them. Usually the presence of CO 2 /HCO 3 – /CO 3 2– is either forgotten or considered only as a buffer or proton transfer catalyst. Results obtained in the last decades point out that carbonates are key participants in a variety of oxidation processes. This was first attributed to the formation of carbonate anion radicals via the reaction OH • + CO 3 2– → CO 3 •– + OH – . However, recent studies point out that the involvement of carbonates in oxidation processes is more fundamental. Thus, the presence of HCO 3 – /CO 3 2– changes the mechanisms of Fenton and Fenton-like reactions to yield CO 3 •– directly even at very low HCO 3 – /CO 3 2– concentrations. CO 3 •– is a considerably weaker oxidizing agent than the hydroxyl radical and therefore a considerably more selective oxidizing agent. This requires reconsideration of the sources of oxidative stress in biological systems and might explain the selective damage induced during oxidative stress. The lower oxidation potential of CO 3 •– probably also explains why not all pollutants are eliminated in many advanced oxidation technologies and requires rethinking of the optimal choice of the technologies applied. The role of percarbonate in Fenton-like processes and in advanced oxidation processes is discussed and has to be re-evaluated. Carbonate as a ligand stabilizes transition metal complexes in uncommon high oxidation states. These high-valent complexes are intermediates in electrochemical water oxidation processes that are of importance in the development of new water splitting technologies. HCO 3 – and CO 3 2– are also very good hole scavengers in photochemical processes of semiconductors and may thus become key participants in the development of new processes for solar energy conversion. In this Account, an attempt to correlate these observations with the properties of carbonates is made. Clearly, further studies are essential to fully uncover the potential of HCO 3 – /CO 3 2– in desired oxidation processes.
In neutral medium (pH 7.0) [RuIIIRuII(µ-CO3)4(OH)]4− undergoes one electron oxidation to form [RuIIIRuIII(µ-CO3)4(OH)2]4− at an E1/2 of 0.85 V vs. NHE followed by electro-catalytic water oxidation at a potential ≥ 1.5 V. When the same electrochemical measurements are performed in bicarbonate medium (pH 8.3), the complex first undergoes one electron oxidation at an Epa of 0.86 V to form [RuIIIRuIII(µ-CO3)4(OH)2]4−. This complex further undergoes two step one electron oxidations to form RuIVRuIII and RuIVRuIV species at potentials (Epa) 1.18 and 1.35 V, respectively. The RuIVRuIII and RuIVRuIV species in bicarbonate solutions are [RuIVRuIII(µ-CO3)4(OH)(CO3)]4− and [RuIVRuIV(µ-CO3)4(O)(CO3)]4− based on density functional theory (DFT) calculations. The formation of HCO4− in the course of the oxidation has been demonstrated by DFT. The catalyst acts as homogeneous water oxidation catalyst, and after long term chronoamperometry, the absorption spectra does not change significantly. Each step has been found to follow a proton coupled electron transfer process (PCET) as obtained from the pH dependent studies. The catalytic current is found to follow linear relation with the concentration of the catalyst and bicarbonate. Thus, bicarbonate is involved in the catalytic process that is also evident from the generation of higher oxidation peaks in cyclic voltammetry. The detailed mechanism has been derived by DFT. A catalyst with no organic ligands has the advantage of long-time stability.
A detailed investigation of the cobalt corrole Co(tpfc) as molecular catalyst for electrochemical water oxidation uncovered many important mechanism-of-action details that are crucial for the design of optimally performing systems. This includes the identification of the redox states that do and do not participate in catalysis and very significant axial ligand effects on the activity of the doubly oxidized complex. Specifics deduced for the electrocatalysis under homogeneous conditions include the following: the one-electron oxidation of the cobalt(III) corrole is completely unaffected by reaction conditions; catalysis coincides with the second oxidation event; two catalytic waves develop in the presence of OH, and the one at lower overpotential is dominant under more basic conditions. Comparative spectroelectrochemical measurements performed for Co(tpfc) and Al(tpfc), the analogous corrole chelated by the nonredox active aluminum, revealed that the second oxidation process of Co(tpfc) is much more significantly metal-centered than the first one. EPR studies revealed that shift from fully corrole-centered to partially metal-centered in the singly oxidized complex [Co(tpfc)] is achievable with fluoride as axial ligand. The analogous experiment, but with hydroxide instead of fluoride, could not be performed because of a surprising phenomenon: formation of a cobalt-superoxide complex that is actually relevant to oxygen reduction rather than to water oxidation. Nevertheless, fluoride and hydroxide induce very similar effects in terms of the appearance of two catalytic waves, lowering of onset potentials, and increasing the catalytic activity. The main conclusions from the accumulated data are that the apparent pH effect is actually due to hydroxide binding to the cobalt center and that π-donating axial ligands play pivotal and beneficial roles regarding the main factors that are important for facilitating the oxidation of water.
Chloroboron subphthalocyanines (Cl-BsubPc) are robust compounds that can be readily modified at the axial and peripheral positions. Peripherally chlorinated derivatives were recently found to be advantageous regarding integration into organic electronic devices. We now report on the effects of fluorides introduced on both the peripheral and axial positions of BsubPcs. Specific attention on the reduction of these compounds revealed that the much fewer electronegative chlorides still shift the redox potentials as much as fluorides. The main advantage of the fluorinated derivatives was deduced to be their stability, allowing for the spectroscopic characterization of mono-anionic and even bis-anionic subphthalocyanines. This study sets the precedence for further tuning of the electrochemical properties of BsubPcs through molecular design, thus increasing their applicability regarding organic electronic devices that undergo multiple redox cycles during operational lifetime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.