Macrocycles such as porphyrins and corroles have important functions in chemistry and biology, including light absorption for photosynthesis. Generation of near-IR (NIR)-absorbing dyes based on metal complexes of these macrocycles for mimicking natural photosynthesis still remains a challenging task. Herein, the syntheses of four new Ag(III) corrolato complexes with differently substituted corrolato ligands are presented. A combination of structural, electrochemical, UV/Vis/NIR-EPR spectroelectrochemical, and DFT studies was used to decipher the geometric and electronic properties of these complexes in their various redox states. This combined approach established the neutral compounds as stable Ag(III) complexes, and the one-electron reduced species of all the compounds as unusual, stable Ag(II) complexes. The one-electron oxidized forms of two of the complexes display absorptions in the NIR region, and thus they are rare examples of mononuclear complexes of corroles that absorb in the NIR region. The appearance of this NIR band, which has mixed intraligand charge transfer/intraligand character, is strongly dependent on the substituents of the corrole rings. Hence, the present work revolves round the design principles for the generation of corrole-based NIR-absorbing dyes and shows the potential of corroles for stabilizing unusual metal oxidation states. These findings thus further contribute to the generation of functional metal complexes based on such macrocyclic ligands.
A detailed investigation of the cobalt corrole Co(tpfc) as molecular catalyst for electrochemical water oxidation uncovered many important mechanism-of-action details that are crucial for the design of optimally performing systems. This includes the identification of the redox states that do and do not participate in catalysis and very significant axial ligand effects on the activity of the doubly oxidized complex. Specifics deduced for the electrocatalysis under homogeneous conditions include the following: the one-electron oxidation of the cobalt(III) corrole is completely unaffected by reaction conditions; catalysis coincides with the second oxidation event; two catalytic waves develop in the presence of OH, and the one at lower overpotential is dominant under more basic conditions. Comparative spectroelectrochemical measurements performed for Co(tpfc) and Al(tpfc), the analogous corrole chelated by the nonredox active aluminum, revealed that the second oxidation process of Co(tpfc) is much more significantly metal-centered than the first one. EPR studies revealed that shift from fully corrole-centered to partially metal-centered in the singly oxidized complex [Co(tpfc)] is achievable with fluoride as axial ligand. The analogous experiment, but with hydroxide instead of fluoride, could not be performed because of a surprising phenomenon: formation of a cobalt-superoxide complex that is actually relevant to oxygen reduction rather than to water oxidation. Nevertheless, fluoride and hydroxide induce very similar effects in terms of the appearance of two catalytic waves, lowering of onset potentials, and increasing the catalytic activity. The main conclusions from the accumulated data are that the apparent pH effect is actually due to hydroxide binding to the cobalt center and that π-donating axial ligands play pivotal and beneficial roles regarding the main factors that are important for facilitating the oxidation of water.
Three new iridium(iii) corrole complexes, having symmetrically and asymmetrically substituted corrole frameworks and judiciously varied axial ligands are prepared and characterized by various spectroscopic techniques including the X-ray structures of two of them. The observed phosphorescence at ambient temperature appears at much longer wavelengths than the previously reported Ir(iii) porphyrin/corrole derivatives. Efficiencies of these compounds in the generation of singlet oxygen are also studied for the first time.
Considering the overwhelming importance and involvement of iron in numerous biocatalytic processes, the scarceness of synthetic iron complexes as water oxidation catalysts (WOCs) is highly surprising. Given the increasing interest in metallocorroles as electrocatalysts, the current study addressed the water-oxidizing ability of mononuclear and two types of binuclear iron corroles: μ-oxo bridged and linked through β-pyrrole C atoms. This disclosed the modulation of electronic factors for lowering the electrochemical onset potential for water oxidation by the monomeric iron corroles and the fact that the C−C-linked dimer outperforms both the monomer and the μ-oxo dimer as a WOC. Parallel investigations on the corresponding bis-cobalt dimer uncovered it to be the best catalyst not only in terms of efficacy but also with regard to the stability of the catalytically active species. The electrode-adsorbed iron corrole is shown to be a good WOC, at a relatively low voltage with a very high Faradaic efficacy.
The most common oxidation states of copper in stable complexes are +I and +II. Cu(III) complexes are often considered as intermediates in biological and homogeneous catalysis. More recently, Cu(IV) species have been postulated as possible intermediates in oxidation catalysis. Despite the importance of these higher oxidation states of copper, spectroscopic data for these oxidation states remain scarce, with such information on Cu(IV) complexes being non-existent. We herein present the synthesis and characterization of three copper corrolato complexes. A combination of electrochemistry, UV/Vis/NIR/EPR spectroelectrochemistry, XANES measurements, and DFT calculations points to existence of three distinct redox states in these molecules for which the oxidation states +II, +III, and +IV can be invoked for the copper centers. The present results thus represent the first spectroscopic and theoretical investigation of a Cu(IV) species, and describe a redox series where Cu(II), Cu(III), and Cu(IV) are discussed within the same molecular platform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.