The paper introduces a straightforward procedure for estimating the electrical parameters of a simple, but reasonably accurate, two-branches model of a supercapacitor (SC). The equivalent electrical circuit model includes the voltage and frequency dependence on the SC's capacitance, neglecting the selfdischarge phenomenon, so it is mainly devoted to short and mid-term simulations suitable for most industrial applications. The estimation procedure of the electrical parameters starts by analysing the experimental data achieved by a common constant-current discharge test. Such data are used to build a fitting function which is compared with the analytical solution and numerical approximations for the SC's voltage evolution. Thus, initial estimated values of the electrical parameters are obtained through simple relations and are optimised by implementing the least squares method. The procedure is validated after an easy and fast extraction of the optimal parameters of the two-branches model of an SC. Several tests involving a commercial SC have been carried out in Simulink and the results have been compared against experimental data. A good accuracy of the two-branches model in a wide range of constant-current charging/discharging cycles is reported.
The evolution of power generation brings about extensive changes in other parts of the grid, especially in the transmission and distribution components. Within the scope of the Internet of Energy (IoE), electric power flows more flexibly between different parts of the grid. DC power will play an essential role in IoE. Decentralized photovoltaic panels, energy storage, electric vehicle charging stations, and data centers are some of the significant components of future grids dealing with DC power. As a result, power transformers must be appropriately modified to manage power among the different parts of the grid. A power electronic transformer (PET), also known as a solid-state transformer (SST) or smart transformer (ST), is a solution enabling a power grid to deal with this growing complexity. ROMAtrix, as a matrix-converter-based ST, is a developing project targeting future power grids. ROMAtrix realizes the application of a medium voltage (MV) transformer using commercially available power electronic semiconductors. Due to the distinctive features of ROMAtrix and a high number of switches, the implementation of the control system using a single control board is highly demanding. This paper aims to illustrate the implementation, on a field-programmable gate array (FPGA), of pulse width modulation (SVMPWM) applied to the ROMAtrix, considering specific switching patterns. The proposed switching procedure was simulated with PLECS and validated with the hardware-in-the-loop using the OPAL-RT solver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.