Optical spectral images can be used to estimate the amount of bulk absorbers in tissues, specifically oxy-and deoxyhemoglobin, as well as scattering parameters. Most systems that capture spectral image data are large, heavy, and expensive. This paper presents a full end-to-end analysis of a low-cost reflectance-mode multispectral imaging system operating in the visible and near-infrared spectra. The system consists of 13 LEDs mounted on a printed circuit board, a monochrome machine vision camera, and a tablet computer to control the hardware. The bill of materials for the system is less than $1000. Hardware design and implementation are detailed. Calibration, image capture, and preprocessing are also discussed. In validation experiments, excellent agreement is observed in diffuse reflectance measurements between the spectral camera setup and a spectrometer. To demonstrate that such spectral image data can yield meaningful optical measurements in vivo, the forearms of eight volunteers are imaged in the system. Their data are then analyzed to estimate the tissue optical properties of different skin layers using a Monte Carlo lookup table. In three volunteers, spectral images are captured before and after inducing erythema using a warm wet towel. Across the three subjects, a clear increase in the blood content of the superficial plexus layer was observed as a result of the erythema. Collectively, these findings suggest that a low-cost system can capture accurate spectral data and that clinically meaningful information can be derived from it.
METimage is an advanced multispectral radiometer for weather and climate forecasting developed by Airbus Defence & Space under the auspices of the German Space Administration (DLR) for the EUMETSAT Polar System-Second Generation (EPS-SG). The instrument is equipped with a continuously rotating scan mirror with a 1.7s period followed by a static telescope. The scan mirror permits an extended Earth view of 108° per revolution and regular views to on-board calibration sources. A derotator assembly, which is half-speed synchronised with the scanner, is inserted in the optical beam after the telescope to compensate the image rotation in the focal plane. The derotator optical arrangement is a fivemirror concept that minimises the polarisation sensitivity. The derotator design is constrained by optical performance, mass and compactness, which led to the selection of a full silicon carbide (SiC) concept. This paper describes the preliminary design and verification approach of the derotator optics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.